
Introduction

• Li2(OH)Cl is a material studied for its possible use as a solid state Li-ion electrolyte

• It is experimentally observed to exist in two phases , a  low temperature orthorhombic  and a high temperature 
cubic

• The cubic phase is a fast Li-ion conductor

• In this work  the structure of both phases was studied. Molecular dynamics of the cubic phase was performed to 
understand more about the Li-ion mobility 

Methods

• Density functional theory using the projector augmented wave formalism
Data sets generated with ATOMPAW, simulations done with Quantum Espresso

• Quasi harmonic phonons(QHA) calculations were used for structure analysis of possible low temperature phases
90Ry ecut,  12X12X12 and 12X12X6 K-point grids, 

• Lattice constants include  approximate 1.02 LDA correction

• Density functional molecular dynamics in the microcanonical ensemble  from ~350K-650K
45 Ry ecut , 1 Kpoint at 0.5 0.5 0.5, 1fs  time step

Low temperature structure search
• Two possible structures

tetragonal                            and                   orthorhombic

• Tetragonal structure inherently in disagreement with experiment.  Orthorhombic lattice parameters in 
disagreement with experiement and 0.02eV per formula higher in energy than tetragonal

• Quasi harmonic phonon calculations 
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��������� �, �, � is the internal/structural ground state energy calculated by  DFT at  (a,b,c)
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where � �, �, �, � is the harmonic phonon density of states at fixed lattice parameters  �, �, �
� is the Boltzmann constant, � the temperature 

• In practice  calculate ������� (�, �, �, �) on a grid of lattice constants and interpolate to find the free energy 

minimum
- tetragonal calculated  on  4X4X4 grid of lattice constants grid spacing 0.1 Ang

- orthorhombic  on  5X6X5 grid of lattice constants  with grid spacing  0.07 Ang

• Theoretical  vs  Experimental lattice constants at room temp
Schwering predicts   a  4 formula unit unit-cell  this work predicts  a 2 formula unit unit-cell .  It is hypothesized 

that  the lattice parameters in this work    correspond to Schwering’s as       a -> c/2    , b -> a,     c ->  b

QHA 271K Theoretical       Experimental 
a-3.87                                    c/2 - 3.87
b-3.73                                    a  - 3.82
c-8.02                                    b  - 8.00  

First Principles   Simulation of  Li2(OH)Cl
Jason Howard and N.A.W Holzwarth

Molecular Dynamics

• Initial configurations started from  randomly  placing lithium on the available sites and randomly orienting the OH groups in
3X3X3 supercells. 

- Relaxed at  lattice parameters of Schwering scaled by 0.98

• Two starting configurations Initialized  for   target temperatures  300-600K 

• Scatter plot provides qualitative  information .

- snap shot of  lithium and hydrogen approximately every  10fs for a 2ps run
- display ideal locations of  Cl and O

~550�

• Histograms of  theta and phi angles for OH groups

Insights from MD  into  lithium ion conductivity

• For a fast ionic conductor,   conductivity can be expressed in terms
of the   “tracer” or tracked particle   diffusion constant
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• Where  � is the number of mobile ions,  � is the charge of the ions
� is the fundamental charge,  � is Boltzmann’s constant, � the temperature, 
� the volume �� the Haven ratio and �∗  given as
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Where  ��� (t) is the mean square displacement of the mobile ions

In practice evaluate as slope of  ���  �� �

“Scatter” plots of lithium and hydrogen positions
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Generalized Kubo expression for Ionic conductivity
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Theoretical considerations for fast ionic conductor

• Split   �� � into  a mobile ���(�) and a non-mobile term ����(�)
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• Non mobile implies ions are confined to a local minimum  therefore ���� (�)� is bounded by some constant ���

• Closer  inspection of middle term 

2 ��� � ����� � = 2 |��� �  |���� � cos ��,�

• This can  only grow as fast as

±2��� ���(�)�

• ���(�)� goes  as  ��� at long times,  therefore  ±2��� ���(�)�   =   ±2��� ���

• This says for a fast ionic conductor  in terms of the Kubo relation 
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In practice convergence time is long i.e. not yet explicitly demonstrated

Arrenhius plots log �� �� 1/�

• In tracer picture 

log �� = log
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First term on right is plotted 
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   log �� theoretical          log �� experiment (Hood)

Theoretical tetragonal and orthorhombic 
lattice parameters as function of temperature 

Comparison of  theoretical orthorhombic 
with experiment 

Theoretical  orthorhombic  no-QHA 

Theoretical  orthorhombic  with-QHA  room 
temp 

Experiment Hood (digitized from published work)

Theoretical  orthorhombic  coordinates  +  
Schwering experimental lattice parameters 

Initial configuration 2
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