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Motivation — why all solid state batteries ?
Advantages in stability, efficiency, and
safety
Promising new materials with increased
conductivity
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Figure 1. Arrhenius plots for nanoporous f5-Li;PS, (line a), bulk /-
LiyPS, (line b), and bulk 7-Li;PS, (line c). The conductivity data for
bulk Li,PS, are reproduced from the work of Tachez.".
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Summary of “first-principles” calculation methods

Electronic coordinates
Exact problem: / Atomic coordinates

HOr 5 AARTY, (i), (R} = EF, (1}, {R™)

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices,
Oxford (1954)

Density functional theory
Hohenberg and Kohn, Phys. Rev. 136 B864 (1964)
Kohn and Sham, Phys. Rev. 140 A1133 (1965)

Approximately equivalent problem : Ed|9Ctrf[Jn
L ensity
Ground state energy (mean field approximation): E,(r, p{), {R“})

H (v, p(r), {R* Py, (r) =&,y (r)

_ : ary _ OE,(r, p(r),{R"})
P(ll;/)zg/—m; v, (1) Hef(l‘,p(l‘),{izi)— 5o(0) 5
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More computational details:
2\y? __rza 2 \
Hoy 0, p0), R == 322 [ DDy, (o)

(p(r)
2m  “~lr—R“ ‘r—r" |xc :
electron-hucleus gjactron-electron  EXchange-
Exchange-correlation functionals: correlation
LDA: J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996)

HSEO6: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP 118, 8207 (2003)

Numerical methods:
“Muffin-tin” construction: Augmented Plane Wave developed

by Slater = “linearized” version by Andersen:
J. C. Slater, Phys. Rev. 51 846 (1937)
O. K. Andersen, Phys. Rev. B 12 3060 (1975) (LAPW)

Pseudopotential methods:

J. C. Phillips and L. Kleinman, Phys. Rev. 116 287 (1959) -- original idea
P. Blochl, Phys. Rev. B. 50 17953 (1994) — Projector Augmented Wave (PAW)
method
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Outputs of calculations:
Ground state energy :

E,(r,o(r),{R“}) — Determine formation energies
min‘ R (EO (r, p(r),{R"}) ) — Determine structural parameters

— Stable and meta - stable structures

— Normal modes of vibration

v, (l‘)‘2 = Self - consistent electron density

p(r)=>

{e | = One-electron energies; densities of states

Codes: ATOMPAW =>» PAW atomic data files (http://pwpaw.wfu.edu)
ABINIT =» DFT for materials (http://www.abinit.org)
PWSCF =» DFT for materials (http://quantum-espresso.org)
VESTA =» visualization (http://ip-minerals.org/vesta/en)
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Crystal structure of bulk Li,PS, — y-form WAKE FOREST

Pmn2, (#31)
Note: Li;PS, is also found in

" the B-form with Pmna (#62)
‘=, structure
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v-LizPS, [0 1 0] surface
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ideal y-Li;PS, [0 1 O] surface
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More simulations of ideal
v-LizPS, [0 1 0] surface
in the presence of Li —
supercells containing

12 Li atoms and

2 or 4 electrolyte layers
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v-Liz;PS, [0 1 0] surface in the presence of Li - W}‘SE RE(.)I}FST

supercells containing 12 Li atoms and 2 or 4 electrolyte layers
(greater detail)

2 electrolyte layers 4 electrolyte layers

%%%
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Mystery:

Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal. (Also found for B-Li;PS,
and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid
Li;PS, electrolyte samples can be prepared in

Li/ Li;PS,/Li cells and cycled many times
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Computational counter example -
stable interface:
Li/B-Li;PO,

@
@
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Computational counter example — UNIVERSITY

stable interface:
Li/SD-Li,PO,N

10/29/2013 ECS 224



W/ WAKE FOREST

; UNIVERSITY

Back to mystery:

Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal. (Also found for B-Li;PS,
and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid
Li;PS, electrolyte samples can be prepared in

Li/ Li;PS,/Li cells and cycled many times.

Possible solution:

Thin protective buffer layer at Li,PS, surface can
stabilize electrolyte — for example Li,S/Li;PS,/Li,S
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Idealized Li,S/Li,PS,/Li,S system UNIVERSITY

Details:

Thin film of cubic Li,S
oriented in its non-polar

[1 1 0] direction, optimized
on [0 1 0] surface of
v-LizPS,. While the Li,S film
was slightly strained, the
binding energy of the
composite was found to be

stable with a binding energy

of -0.9 eV.
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Idealized Li,S/Li;PS,/Li,S
system optimized
in presence of Li
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Summary and conclusions:
Models of ideal Li;PO, and Li,PO,N surfaces are
computational found to structurally stable in the
presence of Li metal.
Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal. (Also found for B-Li;PS,
and for various initial configurations of Li metal.)
Thin protective buffer layer of Li,S at Li;PS, surface
can stabilize electrolyte; Li,S/Li;PS,/Li,S is found to
be stable in the presence of Li metal.
Experimentally, the ORNL samples of solid Li;PS,
electrolyte, prepared in Li/ Li;PS,/Li cells and cycled
many times, may form thin buffer layer in first few
cycles.



