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Outline
What is meant by “first principles”?
Computational methods & validation

Why are we interested in solid electrolytes?
How can “first principles” help?
Survey of known solid electrolytes
Prediction of new solid electrolytes
Study of electrolyte/electrode interfaces

Remaining challenges
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What is meant by “first principles”?

A series of well-controlled approximations
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Summary of “first-principles” calculation methods

Exact Schrodinger equation:
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Electronic coordinates

Atomic coordinates

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices, Oxford (1954)

Nuclei Electrons

Approximate factorization:
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Summary of “first-principles” calculation methods -- continued
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Density functional theory
Hohenberg and Kohn, Phys. Rev. 136 B864 (1964)
Kohn and Sham, Phys. Rev. 140 A1133 (1965)
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Summary of “first-principles” calculation methods -- continued
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Exchange-correlation functionals:
LDA: J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)
GGA: J. Perdew, K. Burke, and M. Ernzerhof, PRL 77, 3865 (1996)
HSE06: J. Heyd, G. E. Scuseria, and M. Ernzerhof, JCP 118, 8207 (2003)
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More computational details:
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Numerical methods:
“Muffin-tin” construction:  Augmented Plane Wave developed 
by Slater  “linearized” version by Andersen:

J. C. Slater, Phys. Rev. 51 846 (1937)
O. K. Andersen, Phys. Rev. B 12 3060 (1975)  (LAPW)

Pseudopotential methods:
J. C. Phillips and L. Kleinman, Phys. Rev. 116 287 (1959) -- original idea
P. Blöchl, Phys. Rev. B. 50 17953 (1994) – Projector Augmented Wave (PAW) 
method

electron-nucleus electron-electron exchange-
correlation
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Stable and meta-stable structures
                                                  Normal modes of vibration 
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                        One-electron energies; densities of states

Outputs of calculations:



02/25/2014 27th CSP Workshop 9

Estimate of ionic conductivity assuming 
activated hopping

:
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Public domain codes available for electronic 
structure calculations

Method Codes Comments

LAPW www.wien2k.at
elk.sourceforge.net

Works well for smaller unit cells; 
variable unit cell optimization not 
implemented. Need to choose non-
overlapping muffin tin radii and avoid 
“ghost” solutions.

PAW www.abinit.org
www.quantum-espresso.org

Works well for large unit cells (<200 
atoms or so); includes variable unit 
cell optimization. 

ATOMPAW pwpaw.wfu.edu Generates  PAW datasets for abinit
and quantum-espresso (and other 
codes)

Other efforts:
• Gerbrand Ceder’s group at MIT – Materials Project; A Materials Genome 

Approach -- http://www.materialsproject.org/
• Stefano Curtarolo’s group at Duke – Energy Materials Laboratory --

http://materials.duke.edu/
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ATOMPAW Code for generating atomic datasets for PAW calculations
Holzwarth, Tackett, and Matthews, CPC 135 329 (2001)  http://pwpaw.wfu.edu
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Example validation of 
computation methods
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Li3PO4 crystals

(Pnma)

(Pmn21)
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Validation of calculations

A:  B. N. Mavrin et al,  J. Exp. Theor. Phys. 96,53 (2003); B: F. Harbach and F. Fischer, Phys. Status Solidi 
B 66, 237 (1974) – room temp.  C: Ref. B at liquid nitrogen temp.; D: L. Popović et al, J. Raman 
Spectrosc. 34,77 (2003). 
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What is meant by “first principles”?
A series of well-controlled approximations
 Born-Oppenheimer Approximation
 Density Functional Approximation
 Local density Approximation (LDA)
 Numerical method:  Projector Augmented Wave

Validation
 Lattice vibration modes
 Heats of formation
 Activation energies for lattice migration 
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What is the interest in solid electrolytes?



Materials components of a Li ion  battery
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Example: Thin-film battery developed by Nancy Dudney and 
collaborators at Oak Ridge National Laboratory – LiPON
(lithium phosphorus oxinitride) 

From: N. J. Dudney, Interface 77(3) 44 (2008)
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Solid vs liquid electrolytes in Li ion batteries

Advantages
1. Excellent chemical and physical 

stability.
2. Perform well as thin film (≈1m)
3. Li+ conduction only (excludes 

electrons).

Disadvantages
1. Reduced contact area for high capacity 

electrodes.
2. Interface stress due to electrode 

charging and discharging.
3. Relatively low ionic conductivity.

Advantages
1. Excellent contact area with high 

capacity electrodes.
2. Can accommodate size changes of 

electrodes during charge and 
discharge cycles.

3. Relatively high ionic conductivity. 

Disadvantages
1. Relatively poor physical and chemical 

stability.
2. Relies on the formation of “solid 

electrolyte interface” (SEI) layer.
3. May have both Li+ and electron 

conduction.

Solid electrolytes

Liquid electrolytes
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Motivation: Paper by N. Kayama, et. al in Nature Materials 10, 682-686 (2011)
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

LiPON
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li7P3S11
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Motivation: Paper by N. Kamaya, et. al in Nature Materials 10, 682-686 (2011)

R T

Li10GeP2S12
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How can computer simulations contribute
to the development of materials?

 Examine known materials and predict new materials
 Structural forms
 Relative stabilities
 Analyze vibrational modes and other experimentally 

accessible properties
 Model ion migration mechanisms
 Vacancy migration
 Interstitial migration
 Vacancy-interstitial formation energies
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The Li2PO2N story
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Systematic study of LiPON materials – LixPOyNz –
(Yaojun A. Du and N. A. W. Holzwarth, Phys. Rev. B 
81, 184106 (2010) )
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PO2N2
ion

Li ion

(Pbcm) (Aem2)
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Synthesis of Li2PO2N by Keerthi Senevirathne, 
Cynthia Day, Michael Gross, and Abdessadek Lachgar

Method:   High temperature solid state synthesis based on 
reaction

Structure from X-ray refinement:  Cmc21

NPOLiNPOPOLi 22535
1

525
1

2 

Li ion

PO2N2 ion

NOPLi
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Comparison of synthesized and predicted 
structures of Li2PO2N:

Synthesized Predicted

SD-Li2PO2N (Cmc21) s2-Li2PO2N (Aem2)
Calculations have now verified that the SD structure is more stable than the 
s2 structure by 0.1 eV/FU.

NOPLi
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Comparison of synthesized Li2PO2N with Li2SiO3

SD-Li2PO2N (Cmc21) Li2SiO3 (Cmc21)

a=9.07 Å, b=5.40 Å, c=4.60 Å a=9.39 Å, b=5.40 Å, c=4.66 Å 
K.-F. Hesse, Acta Cryst. B33, 901 (1977)

NOPLi Si



02/25/2014 27th CSP Workshop 34

Electronic band structure of SD-Li2PO2N
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More details of SD-Li2PO2N structure

Ball and stick model

c

b

NOPLi

Isosurfaces (maroon) of 
charge density of states 
at top of valence band, 
primarily p states on N.
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Vibrational spectrum of SD-Li2PO2N
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Ionic conductivity of SD-Li2PO2N

NEB analysis of Em
(vacancy mechanism)
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Simulations of other solid electrolytes and 
electrolyte/electrode interfaces

Summary of the Li2PO2N  story
 Predicted on the basis of first principles theory
 Subsequently, experimentally realized by Keerthi

Seneviranthe and colleagues;   generally good 
agreement between experiment and theory

 Ion conductivity properties not (yet) competitive
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From ORNL:  Experiment on electrolyte  Li3PS4
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Crystal structure of bulk Li3PS4 – g-form 
Pmn21 (#31)

Note:  Li3PS4 is also found in
the  b-form with Pnma (#62)
structure
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g-Li3PS4 [0 1 0] surface 
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Simulations of ideal g-Li3PS4 [0 1 0] surface
in the presence of Li

Initial configuration: Computed optimized 
structure:
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More simulations of ideal 
g-Li3PS4 [0 1 0] surface
in the presence of Li –
supercells containing 
12 Li atoms and 
2 or 4 electrolyte layers 
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g-Li3PS4 [0 1 0] surface  in the presence of Li –
supercells containing 12 Li atoms and 2 or 4 electrolyte layers 
(greater detail) 

2 electrolyte layers 4 electrolyte layers



02/25/2014 27th CSP Workshop 45

Mystery:

 Models of ideal Li3PS4 surfaces are computational 
found to be structurally (and chemically) altered by 
the presence of Li metal.  (Also found for b-Li3PS4 
and for various initial configurations of Li metal.)

 Experimentally, the ORNL group has found that solid 
Li3PS4 electrolyte samples can be prepared in            
Li/ Li3PS4/Li cells and cycled many times
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Computational counter example –
stable interface:
Li/b-Li3PO4
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Computational counter example –
stable interface:
Li/SD-Li2PO2N
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Back to mystery:

 Models of ideal Li3PS4 surfaces are computational 
found to be structurally (and chemically) altered by 
the presence of Li metal.  (Also found for b-Li3PS4 
and for various initial configurations of Li metal.)

 Experimentally, the ORNL group has found that solid 
Li3PS4 electrolyte samples can be prepared in            
Li/ Li3PS4/Li cells and cycled many times.

Possible solution:

 Thin protective buffer layer at Li3PS4 surface can 
stabilize electrolyte – for example Li2S/Li3PS4/Li2S
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Idealized    Li2S/Li3PS4/Li2S  system

Details:
Thin film of cubic Li2S 
oriented in its non-polar 
[1 1 0] direction, optimized 
on [0 1 0] surface of 
g-Li3PS4. While the Li2S film 
was slightly strained, the 
binding energy of the 
composite was found to be 
stable with a binding energy 
of -0.9 eV.



02/25/2014 27th CSP Workshop 50

Idealized    Li2S/Li3PS4/Li2S  
system  optimized 
in presence of Li
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Summary of the interface simulations:
 Models of ideal Li3PO4 and Li2PO2N surfaces are 

computational found to structurally stable in the 
presence of Li metal.

 Models of ideal Li3PS4 surfaces are computational 
found to be structurally (and chemically) altered by 
the presence of Li metal.  (Also found for b-Li3PS4 
and for various initial configurations of Li metal.)

 Thin protective buffer layer of  Li2S at Li3PS4 surface 
can stabilize electrolyte; Li2S/Li3PS4/Li2S is found to 
be stable in the presence of Li metal.

 Experimentally, the ORNL samples of solid Li3PS4 
electrolyte, prepared in Li/ Li3PS4/Li cells and cycled 
many times, may form thin buffer layer in first few 
cycles.
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Additional thoughts

 Limitations of first principles modeling
 Small simulation cells
 Zero temperature

 Possible extensions
 Develop approximation schemes for treatment 

of larger supercells
 Use molecular dynamics and/or Monte Carlo 

techniques


