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Motivation — why all solid state batteries ?
Advantages in stability, efficiency, and
safety
Promising new materials with increased
conductivity
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Anomalous High lonic Conductivity of Nanoporous f-Li;PS,

Zengcai Liu,+ Wujun Fu,+ E. AndrewLPayzantf‘i Xiang Yu,+ Zﬂi Wu,+’§ Nancy J. Dudney,i Jim Kiggans,i
Kunlun Hong," Adam J. Rondinone,” and Chengdu Liang™"
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Figure 1. Arrhenius plots for nanoporous f5-Li;PS, (line a), bulk /-
LiyPS, (line b), and bulk 7-Li;PS, (line c). The conductivity data for
bulk Li,PS, are reproduced from the work of Tachez.".
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Calculational methods:

Born-Oppenheimer approximation
Born & Huang, Dynamical Theory of Crystal Lattices,
Oxford (1954)

Density functional theory
Hohenberg and Kohn, Phys. Rev. 136 B864 (1964)
Kohn and Sham, Phys. Rev. 140 A1133 (1965)
Exchange-correlation functional:

LDA: J. Perdew and Y. Wang, Phys. Rev. B 45, 13244 (1992)

Numerical method:
PAW: P. Blochl, Phys. Rev. B. 50 17953 (1994) — Projector Augmented Wave
(PAW) method

Codes: ATOMPAW =>» PAW atomic data files (http://pwpaw.wfu.edu)
ABINIT =» DFT for materials (http://www.abinit.org)
PWSCF =» DFT for materials (http://quantum-espresso.org)
VESTA =» visualization (http://ip-minerals.org/vesta/en)




Crystal structure of bulk Li,PS, — y-form WAKE FOREST

Pmn2, (#31)
Note: Li;PS, is also found in

‘ the B-form with Pmna (#62)
=, structure
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v-LizPS, [0 1 0] surface
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Simulations of ideal y-Li,PS, [0 1 0] surface

in the presence of Li oLi Oop Os
Initial configuration: Computed optimized
structure:
@ ? @ 9
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Simulations of ideal y-Li,PS, [0 1 0] surface

in the presence of Li — larger supercell
(calculations performed by Nicholas Lepley)

Initial configuration:
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v-Liz;PS, [0 1 0] surface in the presence of Li - W’G}ISERE(.)I}?ST

larger supercells containing 12 Li atoms and 2 or 4 electrolyte layers
(calculations performed by Ahmad Al-Qawasmeh)

2 electrolyte layers 4 electrolyte layers

@ %% %% %% %%

3/4/2014 2014 APS March Meeting 10



WAKE FOREST

UNIVERSITY

Mystery:

Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal. (Also found for B-Li;PS,
and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid
Li;PS, electrolyte samples can be prepared in

Li/ Li;PS,/Li cells and cycled many times
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Computational counter example -
stable interface:
Li/B-Li;PO,
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Computational counter example -
stable interface:
Li/SD-Li,PO,N

3/4/2014 2014 APS March Meeting



Another example - Li/Li,P,S - WAKE FOREST

a more stable thiophosphate? (preliminary results from Cameron Kates)

Bulk Li4PzS&b(P§érqrz|))

[0 0 1] surface of Li,P,S¢ plus Li
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Back to mystery:

Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal. (Also found for B-Li;PS,
and for various initial configurations of Li metal.)
Experimentally, the ORNL group has found that solid
Li;PS, electrolyte samples can be prepared in

Li/ Li;PS,/Li cells and cycled many times.

Possible solution:

Thin protective buffer layer at Li,PS, surface can
stabilize electrolyte — for example Li,S/Li;PS,/Li,S
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Idealized Li,S/Li;PS,/Li,S system pNrvERSITY
@O @@ @ @ @@ @A
Details: @ aa, @@ 0 @ a, @O o @O e, @O

Thin film of cubic Li,S
oriented in its non-polar

[1 1 0] direction, optimized
on [0 1 0] surface of
v-Li;PS,. While the Li,S film
was slightly strained, the
binding energy of the
composite was found to be
stable with a binding energy

of -0.9 eV. @ C@Om e @@“““ @ (@O

@%@@ @Qc
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Idealized Li,S/Li;PS,/Li,S
system optimized
in presence of Li
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o o Lo} « system optimized in presence of Li
LS 6)%6 63%6 Q}%Q

LS N4 R4

?ﬁ% ® % bbé)b bh&gq

3/4/2014 2014 APS March Meeting 18



VW@ WAKE FOREST

4 UNIVERSITY

Summary and conclusions:
Models of ideal Li;PO, and Li,PO,N surfaces are
computational found to be structurally stable in the
presence of Li metal.
Models of ideal Li;PS, surfaces are computational
found to be structurally (and chemically) altered by
the presence of Li metal.
Thin protective buffer layer of Li,S at Li;PS, surface
can stabilize electrolyte; Li,S/Li;PS,/Li,S is found to
provide some stability with respect to Li metal.
Computation results consistent with the conclusion
that the ORNL samples of Li/ Li;PS,/Li cells may
form thin buffer layer in first few cycles and making
them stable to further cycling.

Lepley, Holzwarth, and Du, PRB 88, 104103 (2013)



