
PAW-EXX formulation
PAW calculations4 require a set of basis and projector functions which can be denoted |φai (r)〉, |φ̃

a
i (r)〉,

and |p̃ai (r)〉, for the all-electron basis functions, pseudopotential basis functions, and projector functions,
respectively. Here the “a” superscript denotes the atomic site index, and the “i” subscript represents the
atomic quantum numbers ni, li, and mi for a spherical atom. In the PAW formulation, all calculations are
performed in terms of smoothed pseudowavefunctions ψ̃n(r). The corresponding all-electron wavefunctions
can then be estimated with the PAW transformation

ψn(r) = ψ̃n(r) +
∑

ai

(φai (r) − φ̃ai (r))〈p̃
a
i |ψ̃n〉. (8)

The pseudowavefunctions are normalized in terms of an overlap operator

〈ψn|O|ψm〉 = δnm, where O ≡ 1 +
∑

aij

|p̃ai 〉
(

〈φai |φ
a
j〉 − 〈φ̃ai |φ̃

a
j〉

)

〈p̃aj |. (9)

In the PAW formulation, the total energy of the system can be expressed in terms of the pseudowavefunctions
with the general form

EPAW ({ψ̃n(r)}) = Ẽ +
∑

a

(Ea − Ẽa). (10)

Here, Ẽ represents contributions from smooth functions which extend over all space, while the Ea − Ẽa

contributions are confined to “augmentation spheres” of radius rac at each atomic site, representing all-electron
corrections to the energy in the vicinity of each atom. As recently shown,5 the exchange contributions to the
energy can also be represented in the form

EPAWx ({ψ̃n(r)}) = Ẽx +
∑

a

(Eax − Ẽax). (11)

In particular, the core-valence contributions can be represented in the Ea term through the use of the all-
electron basis functions {φi(r)}. The Kohn-Sham equations in the PAW formulation have the form:

HPAW |ψ̃n〉 = EnO|ψ̃n〉, where HPAW ≡ H̃ +
∑

aij

|p̃ai 〉D
a
ij〈p̃

a
j |. (12)

In this expression, H̃ is a smooth pseudo-Hamiltonian representing the interactions throughout all space,
while the Da

ij matrix elements provide corrections to the Hamiltonian interactions in the vicinity of each
atomic site a. The exact exchange potential contributes in three types of terms in this formulation. Within the
smooth pseudo-Hamiltonian H̃ , there will be a corresponding pseudo-exchange potential Ṽx(r). In addition,
for each atomic center, there will be atomic exchange potentials V ax (r) for the all-electron and Ṽ ax (r) for the
pseudopotential contributions. These last two terms will contribute to Da

ij matrix elements in the form:

[V ax ]ij ≡ 〈φai |V
a
x |φ

a
j〉 − 〈φ̃ai |Ṽ

a
x |φ̃

a
j〉. (13)

Consequently, the auxiliary function to be minimized should take the form:

FPAW ({ψ̃n(r)}, {g̃n(r)}, {En}, Ṽx(r), V
a
x (r), Ṽ ax (r), {λn}) = EPAW ({ψ̃n)}) (14)

−
∑

n

λn

(

〈ψ̃n|O|ψ̃n〉 − 1

)

−
∑

n

(

〈g̃n|H
PAW − EnO|ψ̃n〉 + 〈ψ̃n|H

PAW − EnO|g̃n〉
)

.

The minimization of the auxiliary function FPAW results in the following relations. The smooth Lagrange
multiplier function g̃n(r) is a solution to the inhomogeneous differential equation

(HPAW − EnO)g̃n(r) =
∂EPAWx

∂ψ̃n(r)
− Ṽx(r)ψ̃n(r) −

∑

aij

p̃ai (r)[V
a
x ]ij〈p̃

a
j |ψ̃n〉 − UnOψ̃n(r). (15)

Here the constant Un is given by Un ≡ 〈ψ̃n|
∂EPAW

x

∂ψ̃n
〉 − 〈ψ̃n|Ṽx|ψ̃n〉 −

∑

aij〈ψ̃n|p̃
a
i 〉[V

a
x ]ij〈p̃

a
j |ψ̃n〉, and the

orthogonality condition is given by 〈g̃n|O|ψ̃n〉+〈ψ̃n|O|g̃n〉 = 0. The gradients of the PAW auxiliary function
with respect to the exchange potentials are given by

∂FPAW

∂Ṽx(r)
= −

∑

n

(

g̃∗n(r)ψ̃n(r) + g̃n(r)ψ̃
∗
n(r)

)

(16)

and
∂FPAW

∂V ax (r)
= −

∑

nij

(

〈g̃n|p̃
a
i 〉〈p̃

a
j |ψ̃n〉 + 〈ψ̃n|p̃

a
i 〉〈p̃

a
j |g̃n〉

)

φa∗i (r)φaj (r), (17)

∂FPAW

∂Ṽ ax (r)
=

∑

nij

(

〈g̃n|p̃
a
i 〉〈p̃

a
j |ψ̃n〉 + 〈ψ̃n|p̃

a
i 〉〈p̃

a
j |g̃n〉

)

φ̃a∗i (r)φ̃aj (r). (18)
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EXX ground-state energies (Ry)
Atom Present Work Previous Worka LDA
H −1.0000 −1.0000 −0.8913
He −5.7234 −5.7234 −5.6689
Li −14.8648 −14.8650 −14.6692
Be −29.1449 −29.1448 −28.8929
B −49.0555 −49.0566 −48.6864
F −198.8155 −198.8184 −198.1934
Ne −257.0908 −257.0908 −256.4598
Na −323.7126 −323.7132 −322.8724
Mg −399.2232 −399.2232 −398.2706
Al −483.7463 −483.7466 −482.6224
Cl −918.9541 −918.9552 −917.3166
Ar −1053.6244 −1053.6244 −1051.8796
K −1198.3175 −1198.3182 −1196.3877
Ca −1353.5038 −1353.5038 −1351.4706

aGrabo, Kreibich, Kurth, & Gross, in Ansimov, ed. Strong coulomb correlations in electronic
structure calculations, (Gordon and Breach, 2000), pg. 203.

Some examples of atomic
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Gradient search method for EXX
A convenient formulation of the exact exchange method has been developed by several authors2,3 as a con-
strained minimization problem. The function to be minimized is the total energy of the system including
kinetic, nuclear, Hartree, and exchange terms:

E = ET + EN + EH + Ex. (1)

Here, the exchange energy is expressed in terms of Kohn-Sham orbitals {ψn(r)} as

Ex({ψn(r)}) = −
e
2

2

∑

nm

δσnσm

∫

d
3
r

∫

d
3
r
′ ψ

∗
n(r)ψm(r)ψn(r′)ψ∗m(r′)

|r − r′|
. (2)

The ground state of the system can be found by minimizing E({ψn(r)}) with the constraint that the orbitals
are eigenstates of the Kohn-Sham equations:

HKSψn = Enψn where HKS ≡ T + V and V = VN + VH + Vx. (3)

The potential terms represent the nuclear, Hartree, and exchange contributions, respectively. In the EXX
formulation, while the nuclear and Hartree potentials can be determined from functional derivatives with
respect to the electronic density ρ(r),

VN (r) ≡
δEN
δρ(r)

and VH(r) ≡
δEH
δρ(r)

, (4)

the exact exchange potential Vx(r) is determined as part of the constrained minimization. Following Hyman,
Stiles and Zangwill,2 it is convenient to map the problem into the minimization of an auxiliary function with
the help of Lagrange multipliers:

F ({ψn(r)}, {gn(r)}, {En}, Vx(r), {λn}) = E({ψn)}) −
∑

n

λn (〈ψn|ψn〉 − 1) (5)

−
∑

n

(

〈gn|H
KS − En|ψn〉 + 〈ψn|H

KS − En|gn〉
)

.

The minimization of the auxiliary function F results in the following relations. The Lagrange multiplier
function gn(r) is a solution to an inhomogeneous differential equation

(HKS − En)gn(r) =
∂Ex

∂ψn(r)
− Vx(r)ψn(r) − Unψn(r), where Un ≡ 〈ψn|

∂Ex

∂ψn
〉 − 〈ψn|Vx|ψn〉, (6)

with the condition 〈gn|ψn〉 + 〈ψn|gn〉 = 0. The functions {gn} are in turn related to the gradient of the
auxiliary function F with respect to the exchange function according to

∂F

∂Vx(r)
= −

∑

n

(g∗n(r)ψn(r) + gn(r)ψ
∗
n(r)) = 0. (7)

Gradient search algorithm for self-consistent EXX potential
α = 1; Set initial potential V α = VN + V αH + V αx .
Do

1. Solve: (T + V α)ψα+1
n = Eα+1

n ψα+1
n .

2. Calculate: ∂F
α+1

∂V α
≡ −Gα+1(r)

3. If |Gα+1| < ε =⇒ CONVERGED
4. Else Update: V α+1 = V α + λGα+1; α = α + 1

EndDo
At the end of this procedure, Vx = V α−VN −V αH . We have programmed this algorithm for spherical atoms
and the results agree well with literature values as shown in the Table and Figure.

Introduction
The optimized effective potential (OEP) or exact exchange (EXX) formalism has recently received renewed
attention as a method which can improve the accuracy of density functional theory with its ability to treat
orbital-dependent functionals such as the Fock exchange and orbital-dependent correlation functionals.1−3

Since the Projector Augmented Wave (PAW) formalism4 enables an accurate treatment of the important core-
valence contributions to the exchange interaction,1 it is a natural choice for implementing EXX within an
efficient pseudopotential-like scheme. This poster presents an early progress report on our PAW-EXX project.
Concentrating, for the moment, on an exchange-only approach we show results from our atomic structure
code and outline a PAW-EXX formalism.
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