
In practice, for some elements , we find that different treatments for upper core states give
prominent visible difference. For example , the projectors of Ge :
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The other adjustable function in this construction is the localized potential Ṽ a
loc(r) define

in(20) . A simple, but reasonable choice is:

Ṽloc(r) = V0k(r) (24)

where :

k(r) =

[
sin(πr/ra

c )

(πr/ra
c )

]2

(25)

For r < ra
c , and zero elsewhere.

The follwoing Table lists the Hartree-Fock valence energies of several atoms comparing the
PAW energies with the corresponding frozen core results and also comparing the the effects
of including or excluding the pseudo-core orbitals, and the effects of V′

Atom Type |ψ̃c| ra
c V0 Eval(ns2np2) Eval(ns1np3)

C FC - - - -10.5990 -9.9542
C PAW > 0 1.3 2.0 -10.5990 -9.9541
C PAW ≡ 0 1.3 2.0 -10.5990 -9.9541
Si FC - - - -7.3147 -6.8070
Si PAW > 0 2.0 3.0 -7.3147 -6.8066
Si PAW ≡ 0 2.0 3.0 -7.3147 -6.8070
Ge FC - - - -7.2257 -6.6800
Ge PAW > 0 2.2 3.0 -7.2258 -6.6796
Ge PAW ≡ 0 2.2 3.0 -7.2258 -6.6800

Summary and Conclusion
In this paper, we first numerically compared the frozencore orbital and the frozencore poten-
tial approximations. For our choice of potential form, the frozencore orbital approximation
gave results closer to the all-electron Hartree-Fock treatment. we then derived the equations
and demonstrated examples of the PAW-HF formalism for atoms across the periodic table,
and showed that with the proper choice of augmentation radii, local pseudopotentials, etc.
atomic PAW calculations can achieve the same numerical accuracy as the frozencore orbital
approximation within Hartree-Fock theory.
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However, the results obtained by using the above choice of frozencore potential show the
error in the valence energies of excited states to be larger by a factor of 5-10 than that of the
frozencore orbital approximation . On the other hand, it is quite possible that the frozencore
potential error can be reduced by improving the form[9] of the frozencore potential V cv

x (r).

PAW formulation of Hartree Theory
The Projector Augmented Wave (PAW) formalism was developed by Blöchl[3] and imple-
mented by a number of authors.[3, 10, 11, 4]. A key idea of the PAW formalism is the
transformation between a calculated pseudo-wavefunction (Ψ̃v(r)) and the corresponding
fully nodal wavefunction (Ψv(r)) of valence state :

Ψv(r) = Ψ̃v(r) +
∑
ai

(Φa
i (r −Ra)− Φ̃a

i (r −Ra))
〈
P̃ a

i

∣∣∣ Ψ̃v

〉
(17)

We denote these as Φa
i (r) for an all-electron basis function, Φ̃a

i (r) for the correspond-
ing pseudo-electron basis function, and P̃ a

i (r) for the corresponding projector function.
The projector functions satisfy the relationship

〈
P̃ a

i

∣∣∣ Φ̃a
j

〉
= δij.And the radial pseudo-

functions have the propertyφ̃a
i (r) = φa

i (r) for r > ra
c .

We decide to use the frozencore orbital approximation for our PAW implementation , and
the self-consistent Hartree-Fock equations for the PAW formulation take the form:

HPAW
HF (r)ψ̃HF

v (r) + XPAW
v (r)−

∑
q

λqvO
PAW
HF ψ̃HF

v (r) = 0 (18)

Here :
HPAW

HF (r) = H̃HF +
∑
aij

∣∣∣P̃ a
i

〉
DaHF

ij

〈
P̃ a

j

∣∣∣ (19)

And
H̃HF = K + ṼN(r) + ṼH(r) + Ṽloc(r) (20)

XPAW
v (r) = X̃v(r) +

∑
ai

∣∣∣P̃ a
i

〉
Xa

iv (21)

Here Ṽloc(r) is a localized potential defined in the range 0 < r < ra
c . The effects of core

electrons are incorporated in DaHF
ij and Xa

iv matrix element, and These equations must be
solved self-consistently, with orthonormalization constraint:

〈
Ψ̃HF

v

∣∣OPAW
∣∣ Ψ̃HF

q

〉
= δqv (22)

For the core wavefunctions ΨHF
c (r) , most of them are contained within the augmentation

sphere and we can define a trivial core pseudowavefunction Ψ̃HF
c (r) ≡ 0 for them. For some

materials it is possible that the outer most core orbital will have a non-trivial amplitude for
r > ra

c . In such a case, we define a continuous pseudo-core orbital ψ̃a
c (r) with ψ̃a

c (r) ≡ ψa
c (r)

for r > ra
c .

0 1 2 3 4
r (bohr)

0

0.2

0.4

0.6

0.8

1

1.2

ψ
c(r

) 
(a

u)

ψc

ψc
~ rc

Ge 3d

Given the basis function for the reference state, We use the following equation to obtain the
projector within Hartree-Fock formalism :

H̃HF (r)Φ̃a
i (r) + X̃i(r)− ∑

q,Nq

λqiΨ̃
HF
q (r)

=
∑
j

P̃ a
j (r)(

〈
Φ̃a

j

∣∣∣H̃HF
∣∣∣ Φ̃a

i

〉
+

〈
Φ̃a

j

∣∣∣ X̃i

〉
− ∑

q,Nq>0

λqi

〈
Φ̃a

j

∣∣∣ Ψ̃HF
q

〉
)

(23)

AE HF iteration algorithm
In practice, rather than directly solving the intergral-differential equations, we use iterative
techniques [7]. Starting with an initial guess for the radial components {ψHF (0)

p (r)}, we
solve a set of inhomogeneous differential equations iterativly to obtain updated ψ

HF (1)
p (r).

(HHF (0)(r)− ε(0)
p )ψHF (1)

p (r) = R(0)
p (9)

Here the left hand side is obtained from previous iteration :

R(0)
p = −X(0)

p (r) +
∑

q

λ(0)
qp ψHF (0)

p (r)− ε(0)
p ψHF (0)

p (r) (10)

The parameters ε
(0)
p ≈ λ

(0)
pp are introduced to further stablize the solution . [8]

Frozen-core atomic Hartree Fock equations
The frozen core wavefunction approximation within Hartree-Fock theory has also been well
described in the literature [7]. In this case , the exchange energy can be divided into core-
valence and valence-valence interactions :

Eval
x = Ecv

x + Evv
x (11)

Here :

Ecv
x = −

∑
vc

lv+lc∑

L=|lv−lc|
ΘL

vcR
L
vc,vc(r) and Evv

x = −
∑

vv′

lv+lv′∑

L=|lv−lv′|
ΘL

vv′R
L
vv′,vv′(r) (12)

To get an idea of the percentage of the core-valence and valence-valence contributions to
the exchange energy , results are plotted below.The energy values are given in Ry units.
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The self-consistent solution of the frozen core orbital approximation Hartree-Fock equa-
tions corresponds to solving only for the valence orbitals (p ≡ v) while leaving the core
orbitals ψHF

c (r) fixed at the reference state. It is important to require that the valence orbitals
ΨHF

v (r) remain orthogonal to each other as well as to the core orbitals :
〈
ΨHF

v

∣∣ ΨHF
c

〉
= 0

As a quantitative measure of the frozencore error, we define the difference of the exitation
energy calculated in the frozencore approximation relative to the exitation energy calculated
in an all-electron treatment to be:

∆∆E = (Eexcited
tot − Eground

tot )AE − (Eexcited
val − Eground

val ) (13)

We find the frozen core wavefunction approximation in Hartree-Fock theory to have similar
accuracy to that of the frozencore approximation in Kohn-Sham theory .
Another possible treatment on core effects is to eliminate the core wavefunctions and to
represent their effects in terms of pseudopotential.[1, 2]. For the Hartree-Fock analogue,
an intuitive question to ask is whether there existed such a fixed potential V cv

x (r) which can
accurately approximate the core-valence exchange interaction .

HHF = K + VN(r) + V c
H(r) + V c

H(r) + V cv
x (r) (14)

Here the last term V cv
x represents the core electrons’ effects , and the Hamiltonian is different

from (6)
The corresponding equations in the Hartree-Fock frozencore potential approximation take
the form:

HHF (r)ψHF
v (r) + Xvv

v (r) =
∑

q,Nq>0

λqvψ
HF
q (r) (15)

The corresponding valence-core exchange energy in comparison to (12) is then given by

Ecv
x =

∫
drV cv

x (r)nv(r) (16)

.

Introduction
Recently, there has been renewed interest in using the Hartree-Fock approximation as a
component of electronic structure calculations.[1, 2]. In this poster, we first examine how
to represent the core electrons’ effects within the Fronzen-core Hartree Fock scheme. And
based on that, we develop a projected augmented wave (PAW)[3, 4] formulation of Hartree-
Fock theory. We investigate how the PAW formalism, developed for Kohn-Sham theory[5]
can be modified to work with the integral-differential equations of Hartree-Fock theory , and
how core electrons should be treated. In this paper, the examination focuses on the treatment
of spherical atoms; application of the Hartree-Fock PAW formalism to non-spherical, spin
polarize, and/or multi-component systems can be obtained with a straightforward extension
of the basic equations. These investigations also provide useful insights into our Optimized
Effective Potential(OEP)-PAW methods that we have been working on.

All-electron Hartree-Fock equations
The Hartree-Fock integral-differential equations can be derived as a total energy minimiza-
tion problem with orthogonalization constraints. The object function can be given by :

Ftot = Etot −
∑
qp

Npλqp(
〈
ΨHF

p

∣∣ ΨHF
q

〉− δqp) (1)

Where Np is the occupation number in orbital p , λqp denotes a Lagrange multiplier, Etot is
the total energy , which can be written as the sum of kinetic energy EK, nuclear energy EN

, Hartree energy EH and Exchange energy EX .

Etot = EK + EN + EH + Ex (2)

here Ex is the Fock exchange energy :

Ex = −e2
′∑

pq

∫ ∫
d3rd3r′

Ψ∗
q(r

′)Ψ∗
p(r

′)Ψ∗
p(r)Ψq(r)

|r − r′| (3)

By taking functional derivative of the Etot with respect to the orbital :

∂Ftot

∂ΨHF∗
p

= 0 (4)

We obtain the Hartree-Fock integral-differential equations

HHFΨHF
p (r) + Xp(r)−

∑

q,Nq>0

λqpΨ
HF
q (r) = 0 (5)

Which must be solved self-consistently , here the Hartree-Fock Hamiltonian takes the form

HHF (r) = K + VN(r) + VH(r) (6)

And the exchange kernel is given by :

Xp(r) =
1

Np

∂Ex

∂ψ∗p
= −

∑
q

lp+lq∑

L=|lp−lq|

1

Np
ΘL

pqW
L
qp(r)ψHF

q (r) (7)

where :

WL
qp(r) = e2

∫
dr′

rL
<

rL+1
>

ψHF∗
q (r′)ψHF

p (r′) (8)

and ΘL
pq [6] is the weight factor for the moment L for spherically averaged atom .

The shapes of the Hartree-Fock wavefunctions are, in general, similar to the shapes of the
corresponding Kohn-Sham wavefunctions, for example Ge :
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