Cu₂ZnSnS_xO_{4-x} and Cu₂ZnSnS_xSe_{4-x}: First principles simulations of optimal alloy configurations and their energies

Chaochao Dun, Natalie Holzwarth, Yuan Li, Wenxiao Huang, David Carroll

Questions: Does Oxidation occur?

Kesterite structure of pure Cu₄ZnSnS₄ (CZTS)

Fabrication of pure materials

Phase diagrams & Stable region

Alloys: Lattice Parameters Variations

Prediction of Oxidation and Selenization

Possible Fabrication Methods

Energetically Structure of CZTSO/CZTSSe

Fabrication of pure materials

Possible synthesis reactions for CZTS family of compounds.

Starting materials	Product	ΔH_{cal}^R
$Cu_2S+ZnS+SnS_2$	$\mathrm{Cu_{2}ZnSnS_{4}}$	-0.573
2CuS+ZnS+SnS	$\mathrm{Cu_{2}ZnSnS_{4}}$	-0.326
Cu_2SnS_3+ZnS	$\mathrm{Cu_{2}ZnSnS_{4}}$	-0.142
$Cu_2Se+ZnSe+SnSe_2$	$\mathrm{Cu_{2}ZnSnSe_{4}}$	-0.536 Exothermic
2CuSe+ZnSe+SnSe	$\mathrm{Cu_{2}ZnSnSe_{4}}$	-0.288
Cu_2SnSe_3+ZnSe	$\mathrm{Cu_{2}ZnSnSe_{4}}$	-0.063
$Cu_2O+ZnO+SnO_2$	$\mathrm{Cu_{2}ZnSnO_{4}}$	1.679
2CuO+ZnO+SnO	$\mathrm{Cu_{2}ZnSnO_{4}}$	0.374 - Endothermic
Cu ₂ SnO ₃ +ZnO	$\mathrm{Cu_{2}ZnSnO_{4}}$	0.073

Phase diagrams & Stable region

Materials	Calculated	Experimental (CRC)
Cu ₂ S	-0.931 a, -0.52 b	-0.824
Cu2Se	-0.610 a, -0.24 c	-0.677

Plot of Cu versus area in the Zn-Sn plane defining the regions of stability of CZTS and CZTSe, comparing the results of the present work (a) to those of Ref. (b) and Ref. (c).

a Present work.

b A. Walsh, et al, Advanced Energy Materials 2, 400 (2012).

c S. Chen, et al, Advanced materials **25**, 1522 (2013).

Alloys: Lattice Parameters Variations

The calculated lattice parameters (a+b)/2 and c as a function of x, which indicates the concentration of sulfur for Cu₂ZnSnS_xO_{4-x} (A) and Cu₂ZnSnS_xSe_{4-x} (B). All the data are based on calculation of conventional cell.

a J. He, et al, Journal of Alloys and Compounds **529**, 34 (2012).

b S. Levcenco, et al, Optical Materials 34, 1362 (2012).

Prediction of Oxidation and Selenization

Calculated reaction energies or *R*1, *R*2, *R*3, and *R*4 averaged over all alloy configurations and plotted as a functions of *x*. *x* is the concentration of sulfur. *R*3 and *R*4 discuss the solid and gas state of the S/Se respectively.

R1:
$$Cu_2 ZnSnS_4 + (4-x)\frac{1}{2}O_2 \rightarrow Cu_2 ZnSnS_x O_{4-x} + (4-x)S$$

R3: $Cu_2ZnSnS_4 + (4-x)Se_s \rightarrow Cu_2ZnSnS_xSe_{4-x} + (4-x)S_s$

 $R4: \quad Cu_2ZnSnS_4 + (4-x)Se_g \rightarrow Cu_2ZnSnS_xSe_{4-x} + (4-x)S_g$

Possible Fabrication Methods

Reaction energies for formation of CZTSO (reaction R5) and formation of CZTSSe (reaction R6).

R5:
$$\frac{x}{4}(Cu_2S + ZnS + SnS_2) + (1 - \frac{x}{4})(Cu_2O + ZnO + SnO_2) \rightarrow Cu_2ZnSnS_xO_{4-x}$$

R6:
$$\frac{x}{4}(Cu_2S + ZnS + SnS_2) + (1 - \frac{x}{4})(Cu_2Se + ZnSe + SnSe_2) \rightarrow Cu_2ZnSnS_xSe_{4-x}$$

Sn

S

O

Energetically structure of CZTSO/CZTSSe

CZTO is meta-stable in the kesterite structure. Oxygen incorporation in the CZTS lattice is very likely to occur.

 $\text{Cu}_2\text{ZnSnS}_x\text{O}_{4-x}$ alloys are only stable for small range (3.3 < x < 4.0) with respect to binary oxides and sulfides.

For CZTSO alloys, O have preferred configuration, which avoids concentration in any a -b plane.

For CZTSSe, the alloys have random distributions of Se.

It is easier to synthesize CZTS than CZTSe, while it is energetically more favorable to sulfurize CZTSe than to selenize CZTS.

Acknowledgement

Prof. Natalie Holzwarth

Grant DMR-115485

Prof. David Carroll

Le Carroll Research Group

Email: dunc12@wfu.du