Pair-state analysis of the eigenstates of an N-electron system
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The foundation of the electronic structure of atoms, molecules, and solids is conceptionally and
computationally based on single-electron basis representations. It is also known that the energies
of these systems can be exactly represented as a sum of pair-state energies (eigenvalues of the two-
particle reduced Hamiltonian) weighted by two-particle density matrix elements, implying that these
two-electron basis functions should provide a natural alternative basis for analyzing and evaluating
electronic structure. This paper demonstates the notion of a “pair-state” decomposition for a simple
system as a function of its electron-electron interaction strength.

INTRODUCTION

Consider a system of N electrons consisting of one-
electron (h (7)) and two-electron (g(4, 7)) contributions to
the total Hamiltonian:
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It can be shown that an eigenvalue E® of this Hamilto-
nian can be evaluated in the form:
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In this expression EZ denotes the a!”* eigenvalue of the
two-particle “reduced” Hamiltonian:
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with the eigenvalue equation
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defining the pair states ¢,(i,;j) and their corresponding
energies EX'. The pair weight factor I'2¢ in Eq. 2 is de-
fined as the diagonal matrix element of the two particle
density matrix evaluated in the pair-state basis:

r2e = /d1d2d1'd2’¢;(1,2)1“2a(1,2; 1',2¢,(1',2").
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Here, the two-particle density matrix for the N-particle
system can be defined in terms of the many-electron
eigenstate ¥*(1,2,3,...,N):

r20(1,2;1',2") = (6)
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The form of the pair-state expansion (2) implies that
the eigenvalue spectrum {ET'} of the pair Hamiltonian,
weighted by the corresponding diagonal two-particle den-
sity matrix elements I'2%, can represent any eigenstate of
the N-electron system. In this way, the eigenvalues and

eigenvectors of the pair Hamiltonian (3) provides a nat-
ural and, in some sense, universal basis for representing
a many-electron system.

These observations have been known for more than
40 years.[1-4] Bopp[1] evaluated the pair-state expansion
(2) with a simple approximation for I'2%. However it was
later realized[2, 3, 5] that the two-particle density matrix
has a non-trivial “representability” problem[4]. Valde-
moro used quantum chemistry techniques to analyze an
expression similar to (2) for the ground states of Li and
Be atoms and their isoelectronic ions[6, 7]. Coleman
studied the mathematical properties of these functions,
using the terms “pairon” and “eigengeminal” to describe
the pair eigenstates @, (i, ). This work and related work
on properties of the two-particle density matrix are sum-
marized in the proceedings of a symposium held in his
honor([4].

Despite the compelling simplicity of Eq. (2) and the
long history of its study, pair-state analysis has not been
readily incorporated into the repertory of popular nu-
merical techniques for analyzing and solving many-body
systems. One reason for this neglect is the difficulty
of evaluating the two-particle density matrix. Some re-
cent advances in density matrix theory[8, 9] may make
it more practical to evaluate Eq. (6). In fact, the
many-electron eigenvalue can be evaluated in terms of
the trace expression E* = Tr(HFT2?) in any convenient
representation.[2, 3] However, the pair-state representa-
tion of I'2* has have some analytical as well as numeri-
cal advantages. Another reason that pair-state analysis
has not yet been adopted is the difficulty of solving the
pair-state eigenvalue problem (4). Advances in computer
hardware and software may make it possible to solve a
two-body differential equation reasonably efficiently. The
analogous one-body approaches to electronic structure
calculations, such as density functional or Hartree-Fock
theory, need less computational work. However, more
advanced theories which include correlation and/or exci-
tation effects[10-12] require additional computationally
intensive steps. It may be the case that as the need
for more accurate treatments of correlation effects grows,
pair-state analysis may become computationally as well
as analytically attractive.



Before investing a substantial effort in developing pair-
state analysis methods, it is prudent to first address
the question of how quickly the pair-state expansion (2)
might converge. If it is necessary to include the entire
pair-state spectrum in the representation of the ground
state of the many-electron system, then the pair-state
analysis will not be very convenient. On the other hand,
the pair-state expansion promises to be a very attrac-
tive analysis and computational tool if a relatively small
number of pair-states can be used to represent the ground
and first few excited states of the many-electron system.
The answer to this question will undoubtedly depend
upon the system to be studied. In the present work, the
pair-state decomposition is applied to a very simple sys-
tem which has well-defined correlation effects but which
can be evaluated exactly — the one-dimensional Hubbard
model[13] for a finite number of sites. This system has
been well studied[14, 15] and is known to demonstrate
non-trivial correlation effects.

HUBBARD MODEL EXAMPLE

The Hubbard model is formulated in terms a Wannier
basis. In second-quantized form with n denoting the site
index and o (1, }) representing spin, the Hubbard Hamil-
tonian can be written

==t > Cl,Cpy +UZC :CprCl
no (n')

(7)
where the parameters t and U represent the electron hop-
ping and Coulomb repulsion matrix elements, respec-
tively. The operators Cf_ and C,, represent creation
and annihilation operators respectlvely. The sum over n
is taken over the N, sites of the lattice (3 or 4 in this
case). The sum over n' is restricted to nearest neigh-
bors of n. If the pair eigenstates @, (i, j) are represented
as linear combinations of two-electron states of the form
C}, C},|0), where |0) denotes the “vacuum” state, then
the pair-state Hamiltonian appropriate for the Hubbard
model for N electrons can be written in the form:

H"(t,U) = H(Nt— 1’U) - Nt— 1H(1’ M)@

For the simplest non-trivial case, N, = N = 3. There
are a total of 3?;, = 20 three-electron states for this sys-
tem. These states can be further characterized as 1 four-
fold degenerate state with total spin S* = 3/2 and energy
E* =0 and 8 two-fold degenerate states with total spin
5@ = 1/2. The full spectrum of this system is shown in
Fig. 1. For all values of the coupling strength U/¢, the
lowest energy state has spin S = 1/2 and E® < 0 The
pair-state spectrum for this system consists of 4,2, =15

states including 6 singlet states and 3 triplet states. As
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FIG. 1: Plot of the eigenvalues E* (upper panel) and the
corresponding pair eigenvalues EP (lower panel) for the 3-
site and 3-particle Hubbard model plotted as a function of
the scaled Coulomb repulsion U/t.
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FIG. 2: Three dimensional plot of the pair weight functions
I'2% (scaled by N(N —1)/2 = 3) for the lowest eigenstate
(8% =1/2,M* =1/2) of the N, = N = 3 Hubbard model,
as a function of the Coulomb repulsion U/t and of the pair
energy EF /t. Panel (a) represents the ST = 0 and panel (b)
represents the SE = 1, MF =1 pair decompositions.
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FIG. 3: Plot of the eigenvalues E® (upper panel) and the
corresponding pair eigenvalues E. (lower panel) for the 4-
site and 4-particle Hubbard model plotted as a function of
the scaled Coulomb repulsion U/t.

the coupling parameter U/t increases, three of the sin-
glet pair energies EX converge to corresponding constant
triplet energies, while the remaining 3 singlet pair states
increase rapidly, as shown in the lower panel of Fig. 1.

The pair-state analysis was applied to the lowest en-
ergy eigenstate (S® = 1/2, M® = 1/2). The pair weight
coefficients I'2% are shown in Fig. 2a, for the the singlet
contributions and in 2b for the S¥’ = 1, MY =1 triplet
contributions. Additional triplet contributions from the
SP =1, MF = 0 pair states are exactly 1/2 the values
of those shown in Fig. 2b. These results show that the
pair weights are strong functions of the coupling param-
eter U/t. For U = Q there are only 4 pair states with
non-trivial weights (including the S =1, MF = 0 con-
tributions which are not shown). As U/t increases, 5
additional pair states increase their contributions. The
remaining 3 singlet pair states contribute only a small
amount throughout the range of U/t, with a peak total
weight of less that 2% at U/t ~ 3. In summary, 9 out
of the total of 15 pair states contribute to the ground
state energy of the 3-site 3-electron Hubbard model for
most of the range of U/t. Three of the triplet states
(SF =1, MF = —1) are 0 because of symmetry and 3 of
the singlet states contribute only a small amount.

For the second example, N, = N = 4. There are a
total of %’u = 70 four-electron states for this system.
These states can be further characterized as 1 five-fold
degenerate state with total spin quantum number S¢ = 2
and energy E%* = 0, 15 three-fold degenerate states with
total spin S* = 1, and 20 S® = 0 states. The full spec-
trum of this system is shown in Fig. (3). The lowest

2 energy eigenstates have S® = 0 and S® = 1, respec-
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FIG. 4: Three dimensional plot of the pair weight functions
622 for the lowest eigenstate (S* = 0) of the N, = N =
4 Hubbard model, as a function of the Coulomb repulsion
U ét and of the pair energy E/t. Panel (a) represents the
SP = 0 and panel (b) represents the S’ = 1, MY = 1 pair
decompositions.

tively. The pair-state spectrum for this system consists of
6?—; = 28 states with 10 singlet states and 6 triplet states.
As the coupling parameter U/t increases, 6 of the singlet
pair-state energies converge to the corresponding triplet
energies[16] which are constant, and 4 singlet pair-state
energies increase rapidly, as shown in the lower panel of
Fig. 3.

The pair-state analysis was applied to the lowest sin-
glet energy S* = 0 eigenstate. The pair weights are
shown in Fig. 4a for the singlet contributions and in 4b
for the SP = 1, MFP = 1 triplet contributions. Addi-
tional non-trivial triplet contributions from the ST =
1, MF = 0 states are not shown. The results are qualita-
tively similar to the 3-site case. The 6 lowest energy
singlet pair weights T'2% have significant contributions
throughout the range of U/t, while the 4 highest en-
ergy singlet pair states have very small values, peaking
at less than 3% at U/t ~ 2. The 6 triplet pair states for
SP =1, MP = 1shown in Fig. (4) as well as the 6 triplet
pair states for S = 1, MF = 0 (not shown) all con-
tribute to the ground state eigenstate energy throughout
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FIG. 5: Three dimensional plot of the pair weight functions
622 for the next to lowest eigenstate (S® = 1, M* = 1)
of the N, = N = 4 Hubbard model, as a function of the
Coulomb repulsion U/t and of the pair energy EZ /t. Panel
(a) represents the S = 0 and panel (b) represents the S’ =
1, MY =1 pair decompositions.

the range of U/t. In Fig. (5) the pair state decomposition
is shown for the lowest energy triplet state of this system.
While the general pattern of the results are very similar
to that of the singlet case, the greater contribution from
the triplet pair weights is evident. In summary, 18 of the
total of the 28 pair states contribute to the lowest two
energy states of the 4-site 4-electron Hubbard model for
most of the range of U/t. Six of the triplet states states
(SF =1, MP = —1) have zero contributions because of
spin symmetry and 4 of the singlet states contribute only
a small amount. Asin the 3-site case, the “excluded” pair
states are those which contain appreciable amplitudes of
doubly occupied Wannier states of the form CT C’Jr n110)
at strong correlation (large U/t).

OUTLOOK

The results of this study give valuable insight into the
convergence of a pair-state decomposition. Specifically,
while more than the minimum number of pair-states are
needed to represent the low energy states of a highly

correlated system (as represented in this model by large
values of U/t), a significant number of pair states are
reasonably well excluded.

The Hubbard model represents only a small part of the
numerical challenges of the “typical” many-electron prob-
lem. In order to further study the pair-state formalism,
numerical methods for solving the pair-state eigenvalue
equation (4) must be developed for atoms, molecules, and
solids. The fact that the equation depends only on the
fundamental interactions (h(7) and g(i, 7)) of the system,
and has convenient scaling properties[3] should provide
numerical advantages. It will also be necessary to de-
velop algorithms for evaluating the two-particle density
matrix elements in the pair basis. As pointed out by
Coleman[2, 4], the pair weight factors I'?% are consid-
erably more complicated than occupation numbers that
appear in Hartree-Fock or density functional theory. On
the other hand, because of the form of the pair-state
decomposition equation (2), all of the electronic configu-
ration information for the N-electron state is contained
within the pair weight I'2% coefficients.
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