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PHY 711 – Notes on Hydrodynamics – (”Solitary Waves”[1])

Basic assumptions

We assume that we have in incompressible fluid (ρ = constant) a velocity potential of the form
Φ(x, z, t). The surface of the fluid is described by h + ζ(x, t) = z. The fluid is contained in a
tank with a structureless bottom (defined by the plane z = 0) and is filled to a vertical height h at
equilibrium. These functions satisfy the following conditions.
Poisson equation:

∂2Φ(x, z, t)

∂x2
+

∂2Φ(x, z, t)

∂z2
= 0 (1)

Zero vertical velocity at bottom of the tank:

∂Φ(x, 0, t)

∂z
= 0 (2)

Bernoulli’s equation:

−∂Φ(x, z, t)

∂t
+

1

2

(∂Φ(x, z, t)

∂x

)2

+

(
∂Φ(x, z, t)

∂z

)2
+ gζ(x, t)


z=h+ζ

= 0 (3)

Surface equation:

−∂Φ(x, z, t)

∂z
+

∂Φ(x, z, t)

∂x

∂ζ(x, t)

∂x
− ∂ζ(x, t)

∂t

⌋
z=h+ζ

= 0 (4)

In this treatment, we assume seek the form of surface waves traveling along the x− direction and
assume that the effective wavelength is much larger than the height of the surface h. This allows us
to approximate the z− dependence of Φ(x, z, t) by means of a Taylor series expansion:

Φ(x, z, t) ≈ Φ(x, 0, t) + z
∂Φ

∂z
(x, 0, t) +

z2

2

∂2Φ

∂z2
(x, 0, t) +

z3

3!

∂3Φ

∂z3
(x, 0, t) +

z4

4!

∂4Φ

∂z4
(x, 0, t) · · · (5)

This expansion can be simplified because of the bottom boundary condition (2) which ensures that all
odd derivatives ∂nΦ

∂zn (x, 0, t) vanish from the Taylor expansion (5). In addition, the Poisson equation
(1) allows us to convert all even derivatives with respect to z to derivatives with respect to x.
Therefore, the expansion (5) becomes:

Φ(x, z, t) ≈ Φ(x, 0, t)− z2

2

∂2Φ

∂x2
(x, 0, t) +

z4

4!

∂4Φ

∂x4
(x, 0, t) · · · (6)

For convenience we define φ(x, t) ≡ Φ(x, 0, t). Using Eq. (6), the Bernoulli equation (3) then
becomes:

−∂φ

∂t
+

(h + ζ)2

2

∂3φ

∂t∂x2
+

1

2

(∂φ

∂x

)2

+

(
(h + ζ)

∂2φ

∂x2

)2
+ gζ = 0, (7)

where we have discarded some of the higher order terms. Keeping all terms up to leading order in
non-linearity and up to fourth order derivatives in the linear terms, the Bernoulli equation becomes:



−∂φ

∂t
+

h2

2

∂3φ

∂t∂x2
+

1

2

(
∂φ

∂x

)2

+ gζ = 0. (8)

Using a similar analysis and approximation, the surface definition equation (4) becomes:

∂

∂x

(
(h + ζ(x, t))

∂φ

∂x

)
− h3

3!

∂4φ

∂x4
− ∂ζ

∂t
= 0, (9)

We would like to solve Eqs. (8-9) for a traveling wave of the form:

φ(x, t) = χ(x− ct) and ζ(x, t) = η(x− ct), (10)

where the speed of the wave c will be determined. Letting u ≡ x− ct, Eqs. (8 and 9) become:

d

du

(
(h + η(u))

dχ(u)

du

)
− h3

6

d4χ(u)

du4
+ c

dη(u)

du
= 0, (11)

and

c
dχ(u)

du
− ch2

2

d3χ(u)

du3
+

1

2

(
dχ(u)

du

)2

+ gη(u) = 0. (12)

The modified surface equation (11) can be integrated once with respect to u, choosing the constant
of integration to be zero and giving the new form for the surface condition:

(h + η)χ′ − h3

6
χ′′′ + cη = 0, (13)

where we have abreviated derivatives with respect to u with the “′” symbol. This equation, and the
modified Bernoulli equation (8) are now two coupled non-linear equations. In order to solve them,
we use, the modified Bernoulli equation to approximate χ′(u) and its higher derivatives in terms of
the surface function η(u). Equation (8) becomes approximately:

χ′ = −g

c
η +

h2

2
χ′′′ − 1

2c
(χ′)2 ≈ −g

c
η − h2g

2c
η′′ − g2

2c3
η2. (14)

Using similar approximations, we can eliminate χ′(u) and its higher derivatives from the surface
equation (13):

(h + η)

(
−g

c
η − h2g

2c
η′′ − g2

2c3
η2

)
+

h3g

6c
η′′ + cη = 0, (15)

where some terms involving non-linearity of higher than 2 or involving higher order derivatives have
been discarded. Collecting the leading terms, we obtain:(

1− gh

c2

)
η − gh3

3c2
η′′ − g

c2

(
1 +

gh

2c2

)
η2 = 0. (16)

For the second two terms, Fetter and Walecka argue that it is consistent to approximate gh ≈ c2,
which reduces (16) to (

1− hg

c2

)
η(u)− h2

3
η′′(u)− 3

2h
[η(u)]2 = 0. (17)



Your text shows that a solution to Eq. (17) (corresponding to Eq. 56.30 of the text), with the initial
condition η(0) = η0 and η′(0) = 0, is the solitary wave form:

ζ(x, t) = η(x− ct) = η0 sech2

√3η0

h

x− ct

2h

 , (18)

with

c =

√
gh

1− η0/h
≈
√

gh
(
1 +

η0

2h

)
. (19)

The “standard” form of the related Korteweg-de Vries equation[2] is given in terms of the scaled
variables t̄ and x̄ in terms of the function η(x̄, t̄) by

∂η

∂t̄
+ 6η

∂η

∂x̄
+

∂3η

∂x̄3
= 0, (20)

which has a solution

η(x̄, t̄) =
β

2
sech2

[√
β

2
(x̄− βt̄)

]
. (21)

This form is related to our results in the following way.

β = 2η0, x̄ =

√
3

2h

x

h
, and t̄ =

√
3

2h

ct

2η0h
. (22)

To show how the reduced equation (17) is related to the Korteweg-de Vries equation, we first take
the u derivative to find:

η0

h
η′ − h2

3
η′′′ − 3

h
ηη′ = 0, (23)

where we have used the relation
η0

h
= 1− gh

c2
. (24)

Then we notice that
∂η

∂t
= −c

dη

du
and

∂η

∂x
=

dη

du
, (25)

so that Eq. (23) can be written:

− η0

ch

∂η

∂t
− h2

3

∂3η

∂x3
− 3

h
η
∂η

∂x
= 0. (26)

Substituting the transformation (22) into this partial differential equation yields the Korteweg-de
Vries equation (20).
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