
Physics 741 – Graduate Quantum Mechanics 1 

Solutions to Midterm Exam, Fall 2014 
 
 Please note that some possibly helpful formulas and integrals appear on the second page.  
The number of points for each question is marked at the start, with points for each part marked 
separately. 
 

1. [20 points]  Consider the wave function     2
x N x ia   .  This state, once properly 

normalized, has expectation values 13
2P a   and 2 2 23P a  . 

(a) [7] What is the correct normalization N? 
 
 We demand that the normalization integral yield 1, so we have 
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(b) [7] What is X  and 2X  for this state? 

 
 We simply compute 
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(c) [6] Find the uncertainties x  and p  and show that they satisfy the uncertainty 

relation. 
 
 The uncertainties are computed using 

 

 

22 2 2 2

22 2 2
22 2

2 2 2

3 1
2 2

0 ,

3 3 9 3
3 ,

2 4 4

3
, , .

2

x X X a a

p P P
a a a a

x a p x p
a

     

             
   

       

   

  

 

 



2. [20 points] A particle of mass m lies in the infinite square well with allowed region 
0 x a  .  At t = 0, the wave function takes the form 
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 in the allowed region and it vanishes elsewhere 

(a) [7] Write this state in the form  0 n nn
c   .  Some helpful integrals are 

provided. 
 
 We need to find the cn’s, which are given by 
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The middle term doesn’t contribute because we n is positive.  In summary, 

1 1
3 74 42 , 2 , all others vanish.c N a c N a    

 
(b) [6] Determine the normalization constant N such that  is normalized. 

 
 To make it normalized, we need 
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It follows that  
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(c) [7] Write  t  as a function of time in terms of the eigenstate basis, and write 

 ,x t . 

 
 We have 
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3. [25 points] In a certain basis, the Hamiltonian takes the form
1 2

2 0
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 . 

(a) [12] Find the eigenvalues and normalized eigenvectors of this Hamiltonian. 
 

 To find the eigenvalues, we first factor out the common factor of   and then use the 
characteristic equation of the remaining matrix: 
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This has roots of 2   and 1   , so the original eigenvalues are 2   and  .  To find the 
eigenvectors, we return to the reduced matrix, and we have 
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Equating these pair of expressions in either case we have 
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Each pair of equations is, in fact, redundant, and simply reduces to 
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Up to normalization, our vectors are now 

2
2 and .

2

 
 

   
     

   
   

If we demand that these be normalized, we get in the first case the equation 23 1   and in the 
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(b) [7] At t = 0, the state is in the state  
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 The general solution is   niE t
n nn
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(c) [6] At time t, if we were to measure the energy, what would be the possible outcomes 

and corresponding probabilities? 
 

 The energy can take on only one of the two eigenvalues, so the only possibilities are 
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4. [15 points] Consider the harmonic oscillator with mass m and angular frequency .   

(a) [7] For which non-negative integers q will the matrix elements 47 50qX  or 

47 50qP  be non-zero?  I want a complete rule that lets me tell when they are non-

zero. 
 
 The operators X and P each can either increase or decrease n by exactly one.  Hence to 
get from 50 to 47, we must decrease n  by three, which can be achieved in three steps, so 3q  .  
Furthermore, if q is even, then if we start at n = 50, we must have changed by one an even 
number of times, and thus if q is even, the matrix element must vanish.  Hence we must have  

3q   and q odd. 
 

(b) [8] For the smallest q for which they do not vanish, compute them. 
 
 The smallest value is q = 3, for which we must select the operator a every time to get a 
non-vanishing matrix element.  Hence we have 
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5. [20 points] Bottomonium consists of a bottom quark and bottom anti-quark, each of 
mass mb, bound by a potential that is approximately  V r Ar , where r is the distance 

between them. 
(a) [4] Find a formula for the reduced mass of this system in terms of the quark mass 

mb. 
 

 The reduced mass is given by 1
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(b) [5] What is an appropriate choice of coordinates for this system?  Name two 

operators that commute with each other and with the Hamiltonian.  Label the 
eigenstates of H by their eigenvalues under these two new operators.  What can you 
tell me about these eigenvalues? 

 
 The problem is spherically symmetric, which means that all three of the angular 
momentum operators L commute with H.  However, they don’t commute with each other.  But 
we know in general that L2 commutes with any of the L’s, so we can pick our two operators to be 
L2 and Lz.  We then label our states as , ,n l m , in such a way that 

 2 2 2, , , , and , , , , .zn l m l l n l m L n l m m n l mL      

The eigenvalue l must be a non-negative integer (l = 0,1,2, etc.) and m must be an integer whose 
magnitude is no larger than l (m = –l,  –l + 1, –l + 2, …, l). 
 

(c) [5] Factor the wave function into an angular and a radial part.  Describe completely 
on of these functions. 

 
 For spherically symmetric problems, the general solution is      ,R r Yr   . The 

angular part will be spherical harmonics,  ,m
lY   .  These have the properties 
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(d) [6] For the remaining function, write an ordinary differential equation for the 

function.  Do not attempt to solve it. 
 
 We substitute it into Schrödinger’s time independent equation to yield 
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