Physics 741 – Graduate Quantum Mechanics 1

Solutions to Chapter 7

- 5. [15] It is often important to find expectations values of operators like R_i , which when acting on a wave function ψ yields one of the quantities $\{x, y, z\}$.
 - (a) [3] Write each of the quantities $\{x,y,z\}$ in spherical coordinates, and then show how each of them can be written as r times some linear combination of the spherical harmonics Y_1^m . I recommend against trying to "derive" them, just try looking for expressions similar to what you want.

Cartesian coordinates are related to spherical by

$$x = r \sin \theta \cos \phi$$
, $y = r \sin \theta \sin \phi$, $z = r \cos \theta$

Now, glancing at the spherical harmonics, we see that reasonable functions to try would be the Y_1^m 's for which we have

$$rY_{1}^{0}(\theta,\phi) = r\frac{1}{2}\sqrt{\frac{3}{\pi}}\cos\theta = \frac{1}{2}\sqrt{\frac{3}{\pi}}z$$

$$rY_{1}^{\pm 1}(\theta,\phi) = \mp r\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta e^{\pm i\phi} = \mp r\frac{1}{2}\sqrt{\frac{3}{2\pi}}\sin\theta(\cos\phi \pm i\sin\phi) = \frac{1}{2}\sqrt{\frac{3}{2\pi}}(\mp x - iy)$$

It is pretty easy to see how to write z in terms of Y_1^0 . For the other two, we note

$$rY_{1}^{1}(\theta,\phi) + rY_{1}^{-1}(\theta,\phi) = \frac{1}{2}\sqrt{\frac{3}{2\pi}}(-x - iy + x - iy) = -i\sqrt{\frac{3}{2\pi}}y$$

$$rY_{1}^{-1}(\theta,\phi) - rY_{1}^{1}(\theta,\phi) = \frac{1}{2}\sqrt{\frac{3}{2\pi}}(x - iy + x + iy) = \sqrt{\frac{3}{2\pi}}x$$

So in summary, we have

$$x = \sqrt{\frac{2\pi}{3}}r\left[Y_1^{-1}(\theta,\phi) - Y_1^{1}(\theta,\phi)\right], \quad y = \sqrt{\frac{2\pi}{3}}ir\left[Y_1^{1}(\theta,\phi) + Y_1^{-1}(\theta,\phi)\right], \quad z = 2\sqrt{\frac{\pi}{3}}rY_1^{0}(\theta,\phi).$$

(b) [12] Show that the six quantities $\{x^2, y^2, z^2, xy, xz, yz\}$ can similarly be written as r^2 times various combinations of spherical harmonics Y_2^m and Y_0^0 . There should *not* be any products or powers of spherical harmonics, so you can't derive them from part (a).

Inspired by our previous successes, this time we try using the Y_2^m 's times r^2 . Writing them out, we have

$$r^{2}Y_{2}^{0}(\theta,\phi) = r^{2} \frac{1}{4} \sqrt{\frac{5}{\pi}} \left(3\cos^{2}\theta - 1 \right) = \frac{1}{4} \sqrt{\frac{5}{\pi}} \left(3z^{2} - r^{2} \right) = \frac{1}{4} \sqrt{\frac{5}{\pi}} \left(2z^{2} - x^{2} - y^{2} \right)$$

$$r^{2}Y_{2}^{\pm 1}(\theta,\phi) = \mp r^{2} \frac{1}{2} \sqrt{\frac{15}{2\pi}} \sin\theta \cos\theta e^{\pm i\phi} = \mp \frac{1}{2} \sqrt{\frac{15}{2\pi}} zr \sin\theta \left(\cos\phi \pm i \sin\phi \right) = \frac{1}{2} \sqrt{\frac{15}{2\pi}} z \left(\mp x - iy \right)$$

$$r^{2}Y_{2}^{\pm 2}(\theta,\phi) = r^{2} \frac{1}{4} \sqrt{\frac{15}{2\pi}} \sin^{2}\theta e^{\pm 2i\phi} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \left[r \sin\theta \left(\cos\phi \pm i \sin\phi \right) \right]^{2} = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \left(x \pm iy \right)^{2}$$

The cross terms aren't too hard to work out; for example

$$r^{2} \left[Y_{2}^{1} \left(\theta, \phi \right) + Y_{2}^{-1} \left(\theta, \phi \right) \right] = \frac{1}{2} \sqrt{\frac{15}{2\pi}} z \left(-x - iy + x - iy \right) = -i \sqrt{\frac{15}{2\pi}} yz$$

$$r^{2} \left[Y_{2}^{-1} \left(\theta, \phi \right) - Y_{2}^{1} \left(\theta, \phi \right) \right] = \frac{1}{2} \sqrt{\frac{15}{2\pi}} z \left(x + iy + x - iy \right) = \sqrt{\frac{15}{2\pi}} xz$$

$$r^{2} \left[Y_{2}^{2} \left(\theta, \phi \right) - Y_{2}^{-2} \left(\theta, \phi \right) \right] = \frac{1}{4} \sqrt{\frac{15}{2\pi}} \left[\left(x + iy \right)^{2} - \left(x - iy \right)^{2} \right] = i \sqrt{\frac{15}{2\pi}} xy$$

From these we see that

$$xy = i\sqrt{\frac{2\pi}{15}}r^{2} \left[Y_{2}^{-2}(\theta,\phi) - Y_{2}^{2}(\theta,\phi) \right]$$

$$xz = \sqrt{\frac{2\pi}{15}}r^{2} \left[Y_{2}^{-1}(\theta,\phi) - Y_{2}^{1}(\theta,\phi) \right]$$

$$yz = i\sqrt{\frac{2\pi}{15}}r^{2} \left[Y_{2}^{1}(\theta,\phi) + Y_{2}^{-1}(\theta,\phi) \right]$$

The problem is the other ones. We notice quickly that we can write

$$2z^{2} - x^{2} - y^{2} = 4\sqrt{\frac{\pi}{5}}r^{2}Y_{2}^{0}(\theta, \phi)$$
$$x^{2} - y^{2} = 2\sqrt{\frac{2\pi}{15}}r^{2} \left[Y_{2}^{2}(\theta, \phi) + Y_{2}^{-2}(\theta, \phi)\right]$$

Unfortunately, we can find none of the desired quantities using only these. Hunting around through the other choices, we see that

$$r^2 = x^2 + y^2 + z^2 = 2\sqrt{\pi}r^2Y_0^0(\theta,\phi)$$

At this point it doesn't take a genius to see that we can get any combination we want by taking combinations of these three expressions. We have

$$x^{2} = \frac{1}{3} \left(x^{2} + y^{2} + z^{2} \right) - \frac{1}{6} \left(2z^{2} - x^{2} - y^{2} \right) + \frac{1}{2} \left(x^{2} - y^{2} \right)$$

$$= \frac{2}{3} \sqrt{\pi} r^{2} Y_{0}^{0} \left(\theta, \phi \right) - \frac{2}{3} \sqrt{\frac{\pi}{5}} r^{2} Y_{2}^{0} \left(\theta, \phi \right) + \sqrt{\frac{2\pi}{15}} r^{2} \left[Y_{2}^{2} \left(\theta, \phi \right) + Y_{2}^{-2} \left(\theta, \phi \right) \right],$$

$$y^{2} = \frac{1}{3} \left(x^{2} + y^{2} + z^{2} \right) - \frac{1}{6} \left(2z^{2} - x^{2} - y^{2} \right) - \frac{1}{2} \left(x^{2} - y^{2} \right)$$

$$= \frac{2}{3} \sqrt{\pi} r^{2} Y_{0}^{0} \left(\theta, \phi \right) - \frac{2}{3} \sqrt{\frac{\pi}{5}} r^{2} Y_{2}^{0} \left(\theta, \phi \right) - \sqrt{\frac{2\pi}{15}} r^{2} \left[Y_{2}^{2} \left(\theta, \phi \right) + Y_{2}^{-2} \left(\theta, \phi \right) \right],$$

$$z^{2} = \frac{1}{3} \left(x^{2} + y^{2} + z^{2} \right) + \frac{1}{3} \left(2z^{2} - x^{2} - y^{2} \right) = \frac{2}{3} \sqrt{\pi} r^{2} Y_{0}^{0} \left(\theta, \phi \right) + \frac{4}{3} \sqrt{\frac{\pi}{5}} r^{2} Y_{2}^{0} \left(\theta, \phi \right)$$