Physics 741 — Graduate Quantum Mechanics 1
Solutions to Chapter 2

1. [10] A free particle of mass m in one dimension takes the form at7=0
Y (x,t=0)=y(x)= (A/7z)1/4 exp(in —14x? )
This is identical with chapter 1 problem 4. Find the wave at all subsequent times.

The procedure, as discussed in class, is to first find the Fourier transform, 7 (k). This

was found in problem 1.4, part a:
v (k)= (7z'A)_l/4 e KA

Then the answer to the question is simply
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It’s messy, but it’s finished, and there isn’t much you can do to simplify it.



2. [10] One solution of the 2D Harmonic oscillator Schrodinger equation takes the form
W (x,y,t)=(x+ iy)e_A(x +y )/Ze_ia’t

(a) [3] Find the probability density p(x,y,t) at all times.
p(x, y,t) =YY = (x —iy)e_A(x o )/Ze””’ (x + iy)e_A(x v )/Ze""‘” = (xz +y° )e_A(x =) )
(b) [4] Find the probability current j(x,y,t) at all times.
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(¢) [3] Check the local version of conservation of probability, i.e., show that your
solution satisfies 0p/0t+V-j=0

Since p is independent of time, the first term is zero.
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3. [10] A particle of mass m lies in the one-dimensional infinite square well, which has
potential with allowed region 0 <x<a. Atz=0, the wave function takes the form

(4/\/§)sin3 (7x/a). Rewrite this in the form W (x,r=0)=> cy,(x). Find the wave

function W (x,7) at all later times. The identity sin(36)=3sin6—4sin’ 6 may be
helpful.

We will take advantage of the identity given, which we first rewrite as

sin’ @ = 3sin 6 —+sin(30)

So we have
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In other words, we have ¢, = 3/ Ji0, c, = —1/ V10, and the rest of the ¢;’s vanish.
We now substitute this into the general solution to yield
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