Physics 742 - Graduate Quantum Mechanics 2

Solutions to Chapter 12

9. [15] A hydrogen atom in some combination of the $\boldsymbol{n}=\mathbf{2}$ states is placed in an electric field which adds a perturbation $W=\frac{1}{2} \lambda\left(X^{2}-Y^{2}\right)$ where λ is small. Ignore any spinorbit or hyperfine splitting of the hydrogen atom; i.e., treat all $\boldsymbol{n}=\mathbf{2}$ states of hydrogen as perfectly degenerate before W is included.
(a) [8] Find all non-vanishing matrix elements $\left\langle 2 l^{\prime} m^{\prime}\right| W|2 l m\rangle$ for this interaction.

Since our wave functions for hydrogen are given in spherical coordinates, our first step is to rewrite this expression in spherical coordinates. We have

$$
\begin{aligned}
W(\mathbf{r}) & =\frac{1}{2} \lambda\left(x^{2}-y^{2}\right)=\frac{1}{2} \lambda r^{2} \sin ^{2} \theta\left(\cos ^{2} \phi-\sin ^{2} \phi\right)=\frac{1}{2} \lambda r^{2} \sin ^{2} \theta \cos (2 \phi) \\
& =\frac{1}{4} \lambda r^{2} \sin ^{2} \theta\left(e^{2 i \phi}+e^{-2 i \phi}\right)
\end{aligned}
$$

We now need to calculate

$$
\left\langle 2 l^{\prime} m^{\prime}\right| W|2 l m\rangle=\frac{1}{4} \lambda \int_{0}^{\infty} r^{2} d r r^{2} R_{2 l^{\prime}}(r) R_{2 l}(r) \int d \Omega \sin ^{2} \theta\left(e^{2 i \phi}+e^{-2 i \phi}\right) Y_{l^{\prime}}^{m^{\prime}}(\theta, \phi)^{*} Y_{l}^{m}(\theta, \phi)
$$

The final integral will be non-vanishing only if the powers of $e^{i \phi}$ can be arranged to cancel. Since Y_{l}^{m} is proportional to $e^{i m \phi}$, this only happens if $m-m^{\prime}= \pm 2$, which in turn demands that m and m^{\prime} both be ± 1 and of opposite sign, which also guarantees that $l=l^{\prime}=1$. So the only cases we need to consider are

$$
\begin{aligned}
& \langle 2,1,-1| W|2,1,1\rangle=-\frac{1}{4}\left(\frac{\sqrt{3}}{2 \sqrt{2 \pi}}\right)^{2} \int_{0}^{\infty} r^{2} d r r^{2} R_{21}^{2}(r) \int d \Omega \sin ^{2} \theta\left(e^{2 i \phi}+e^{-2 i \phi}\right) e^{2 i \phi} \sin ^{2} \theta \\
& \langle 2,1,1| W|2,1,-1\rangle=-\frac{1}{4}\left(\frac{\sqrt{3}}{2 \sqrt{2 \pi}}\right)^{2} \int_{0}^{\infty} r^{2} d r r^{2} R_{21}^{2}(r) \int d \Omega \sin ^{2} \theta\left(e^{2 i \phi}+e^{-2 i \phi}\right) e^{-2 i \phi} \sin ^{2} \theta
\end{aligned}
$$

Performing the ϕ-integration, we realize these formulas are identical, and substituting in our radial wave functions, they become

$$
\begin{aligned}
\langle 2,1,-1| W|2,1,1\rangle & =\langle 2,1,1| W|2,1,-1\rangle=-\frac{3 \cdot 2 \pi}{32 \pi} \lambda \frac{1}{24 a_{0}^{5}} \int_{0}^{\infty} r^{2} d r r^{2} r^{2} e^{-r / a_{0}} \int_{0}^{\pi} \sin ^{5} \theta d \theta \\
& =-\frac{\lambda}{32 \cdot 4 a_{0}^{5}} 6!a_{0}^{7} \cdot 2 \int_{0}^{1}\left(1-z^{2}\right)^{2} d z=-\frac{45}{4} \lambda a_{0}^{2}\left(1-\frac{2}{3}+\frac{1}{5}\right)=-6 \lambda a_{0}^{2}
\end{aligned}
$$

(b) [7] Find the perturbed eigenstates and eigenenergies of the $\boldsymbol{n}=\mathbf{2}$ states to zeroth and first order in λ respectively.

The full four by four \tilde{W} matrix is

$$
\begin{aligned}
\tilde{W} & =\left(\begin{array}{cccc}
\langle 200| W|200\rangle & \langle 200| W|210\rangle & \langle 200| W|211\rangle & \langle 200| W|21-1\rangle \\
\langle 210| W|200\rangle & \langle 210| W|210\rangle & \langle 210| W|211\rangle & \langle 210| W|21-1\rangle \\
\langle 211| W|200\rangle & \langle 211| W|210\rangle & \langle 211| W|211\rangle & \langle 211| W|21-1\rangle \\
\langle 21-1| W|200\rangle & \langle 21-1| W|210\rangle & \langle 21-1| W|211\rangle & \langle 21-1| W|21-1\rangle
\end{array}\right) \\
& =-6 \lambda a_{0}^{2}\left(\begin{array}{ccccc}
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{aligned}
$$

It is clear that the first two states, to this order in perturbation theory, are unperturbed, so they are still eigenstates

$$
|200\rangle,|210\rangle ; \quad E_{200}=E_{211}=\varepsilon_{2}=-\frac{k_{e}^{2} e^{4} m}{8 \hbar^{2}}
$$

To find the remaining two states, we need to diagonalize the submatrix

$$
\tilde{W}^{\prime}=-6 \lambda a_{0}^{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

We've encountered this matrix enough that we should know it by heart by now. The states and corresponding energies will be

