
Physics 742 – Graduate Quantum Mechanics 2 
Solutions to Chapter 12 

 
9. [15] A hydrogen atom in some combination of the n = 2 states is placed in an electric 

field which adds a perturbation ( )2 21
2W X Yλ= −  where λ is small.  Ignore any spin-

orbit or hyperfine splitting of the hydrogen atom; i.e., treat all n = 2 states of hydrogen 
as perfectly degenerate before W is included. 
(a) [8] Find all non-vanishing matrix elements 2 2l m W lm′ ′  for this interaction. 

 
 Since our wave functions for hydrogen are given in spherical coordinates, our first step is 
to rewrite this expression in spherical coordinates.  We have 
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We now need to calculate 
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The final integral will be non-vanishing only if the powers of ie φ  can be arranged to cancel.  
Since m

lY  is proportional to ime φ , this only happens if 2m m′− = ± , which in turn demands that m 
and m' both be 1±  and of opposite sign, which also guarantees that 1l l′= = .  So the only cases 
we need to consider are 
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Performing the φ-integration, we realize these formulas are identical, and substituting in our 
radial wave functions, they become 
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(b) [7] Find the perturbed eigenstates and eigenenergies of the n = 2 states to zeroth and 
first order in λ respectively.  

  
 The full four by four W  matrix is 
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It is clear that the first two states, to this order in perturbation theory, are unperturbed, so they are 
still eigenstates 
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To find the remaining two states, we need to diagonalize the submatrix 
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We’ve encountered this matrix enough that we should know it by heart by now.  The states and 
corresponding energies will be 
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