Physics 744 - Field Theory
Solution Set 7

1. Inthe w*w¢ theory, consider the tree-level diagrams (no loops) contributing to

the scattering v (p, )y *(p,) = v (p;)w *(P3) .-
(a) Draw all (two) Feynman diagrams that contribute to this process and label
the intermediate momenta. Write the corresponding Feynman amplitude.
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The two diagrams are sketched above. The Feynman invariant amplitude will be
given by

M=) {(pl—pi)z—lvlz +(p1+p2)2—'\"2}

We have neglected the ic contribution in the denominator. This will be important if we
are right on the energy of the intermediate particle, as can happen in the second term, but
in that case we need to be more sophisticated about everything anyway.

(b) Work out the differential cross-section in the center of mass frame. You may
write your answer in terms of the energies E of any one of the particles or the
magnitude of the three-momentum p as needed. Let & represent the angle
between the initial and final momenta of the  ’s.

The square of any particle’s mass is just m®>. Since we are in the center of mass
frame, the incoming particles have equal and opposite momenta. Since they have the
same mass, that means they have the same energy as well. By conservation of
momentum, the final particles must also have equal and opposite momenta, and since
their masses are identical, their energies will be as well. Hence all four particles have the

same energy E and the same magnitude of their moment p, with E? = p®> +m?. The dot
products are not too difficult to work out:

pl'pi =E*- ﬁl' ﬁl’ =E*- p2 cos &,
P: P, :Ez_ﬁl'pzzEz"’ pz-
We therefore have
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The cross-section is then given by
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where we simply declined to do the angular integral in the final step.

(c) Are there any subtleties having to do with final momenta? Find the total
cross-section.

The final state particles are non-identical, so in this case there are no subtleties.
We simply have to do the final integral. The ¢ integral is trivial, and we let x =1—cosé

to obtain
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It isn’t pretty, but we’re done.



2. We wish to work out the one loop contribution to the propagator 7r( p2) for the
w particle in the y *w¢ theory, using dimensional regularization.

(a) Draw the relevant one loop diagram and write <«k
an expression for the Feynman amplitude. D m o
7K >

The relevant Feynman diagram is sketched at right. The Feynman amplitude is
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(b) Combine the denominators using Feynman parameters. Shift the integral to
make it spherically symmetric.

Following the instructions, we have
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(c) Regulate the integral using dimensional regularization in d =4-2¢
dimensions. Perform the momentum integrals.

We now switch to d =4—2¢ dimensions, and immediately perform the
momentum integrals, using our formula. We then have
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(d) Multiply out all the factors, keeping terms of (’)(5’1) and O(1), but
dropping lower terms. You may leave one Feynman parameter undone.

The small power can be approximated by a‘® = exp(g In a) =1l+¢lna, and

I'(¢)=&"—y. Note that this y is Euler’s constant, having nothing to do with the
coupling . We therefore have
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The integrals are all doable, but we won’t go to the trouble of actually doing them.

(e) Convince yourself, and me, that ﬂ(mz) is always real. Hence there is no
problem calculating the counterterm.

If you substitute p? =m?, this simplifies to

1 .
z(m? dx{—=+y+In| x*’m* +(1-x)M? —ig |~ In(4x
(W)= g2 o -2+ +in e + (1= M =ic]-In(4)
Now, each of the terms in the logarithm is positive, and therefore we can take the limit
& — 0 with impunity. We can then add appropriate counterterms to make sure
everything vanishes at p> = m?.



3. We wish to work out the one loop contribution to the propagator 72'( p2) for the
¢ particle in the w*w¢ theory, using dimensional K

regularization. This was done in class, but | want D
you to redo it using dimensional regularization. @ P
(a-d) Same as previous problem.

The appropriate Feynman diagram is given above. We now calculate
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(e) Convince yourself, and me, that 7Z'(|V| 2) isrealif M <2m. If M >2m, find
the imaginary part, and compare its value to the decay rate for the ¢, given

by I'=7*MZ—4m? /162M2.

The problem, if any, must lie with the logarithm. The logarithm is
In [mz ~M?(x-x*)- ig} . The function x—x? rises from 0 to a maximum value of < at

X =1, 50 the expression m* —M?(x—x*) is never smaller than m* —+M?, and if

M < 2m, this is positive. Hence we are simply taking the logarithm of a positive
number, and therefore 7Z'(M 2) is real. Hence we can add counterterms to make it go

away.
If, on the other hand, M > 2m, then for some values of x the logarithm will be of

a negative number, which will yield a logarithm with an imaginary part. The imaginary
part is —iz whenever m*> —M? (x— x2) iS negative, so we need to figure out when this

happens. Setting it equal to zero, we see that the places where it crosses the x-axis are
when

The range of x-values where the function is negative is therefore

AX=X, —X_ =2/1-m?/M? = [1-4m*/M? .

The imaginary part of z(M?) will therefore be
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It is then easy to see that Im {n(M 2)} =—MT". Thisis not a coincidence, but we won’t

go into it now.

Useful f la: iml | 7 In x if x>0,
seful formula: lim[ In(x~ie) ] = Szl ifx<o0.



