
Solutions to Problems 8b 
 
 

9. Work out *
1 3T B  for all nine states in eq. (8.45).  Then copy Fig. 8-3, and draw an 

arrow showing what happens to each of these states.  For example, since 
*0

1 3 3T 
    , you would draw an arrow from *0  to  . 

 
 This is pretty straightforward.  We have 
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 You can also easily see that 1 3 0T 
   .  

The relevant connections have been sketched at 
right.  The operation always moves you down and to 
the left, and by exactly the same amount in every 
case.  I have also added in the relevant factor in 
every case.  Because there are no arrows on the 
objects on the lower left edge, these states vanish 
when acted on by 1 3T . 
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11. Assume the masses of the baryons in the octet are given by 

    8 8 ,
ij i i

i k k j j kk j
B B X Y T Z T     

    

 where X, Y and Z are constants. 
(a) Find formulas for Nm , m , and m  and m  in terms of X, Y, and Z. 

 
 Because isospin is a pretty good symmetry, we can use any member of an isospin 
multiplet to get the corresponding mass.  For the proton, for example, we have 

    1 33 3 1 3 3 1 1 1
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.pm p p B B X Y T Z T X Y Z              

We similarly work out all the other combinations, though some of them are a little more 
complicated.  We note that because both   and T8 are diagonal, we never need to consider 
“cross-terms” where the corresponding indices don’t match.  For example, for m , we write this 

as 
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By comparison, the other expressions are easy, since we can pick the particles to make the 
expressions as simple as possible.  We have 
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(b) Eliminate X, Y, and Z to show that 2 2 3Nm m m m     .  Demonstrate that this 

works pretty well. 
 
 We have four equations in three unknowns, and hence should be able to eliminate all the 
variables.  It is easiest just to write out the two sides of this equation and check that they come 
out the same.  We have 
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These expressions are obviously equal.  Now, if we use the average mass of each particle in each 
multiplet, we have 
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2 2 2 939 MeV 2 1318 MeV 4514 MeV ,

3 3 1116 MeV 1193 MeV 4541 MeV .
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These numbers are less than 1 percent apart, so this works pretty well. 
 
 

(c) Since the mesons are also in an octet, we might think this implies 4 3Km m m    

(where we used the fact that the kaons have the same masses as their anti-particles). 
Use this to “predict” the kaon mass, and show that this doesn’t work very well.  
What went wrong? (hint – what do Hamiltonian matrix elements represent for 
bosons?)  Fix the formula and show that it now works better. 

 
 
 Naively substituting the numbers in, we would have 

 
 
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4 4 496 MeV 1986 MeV ,

3 3 548 MeV 137 MeV 1781 MeV .
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These numbers differ by about 11%, not very impressive. But then we remember that matrix 
elements for bosons represent the squares of their masses, so the correct relationship should be 

 2 2 24 3 .Km m m    

Substituting the numbers in, and switching to GeV to make the numbers less intense, we have 
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This is about 7% off, which is a little better.  If we take the square root and treat it as a prediction 
for the kaon mass, it is only about 3.5% off, which isn’t bad. 
 
 
 


