
Solutions to Problems 4b 
 
6. Consider a renormalizable theory with two charged spin 0 particles, 1  with charge Q1 

and 2  with charge Q2.  They are not equivalent to their anti-particles *
1  and *

2 . 

(a) Write down all possible renormalizable matrix elements of the form 0 X , 

where X has more than two particles, if 2 1Q Q , and figure out which ones must be 

real. 
 
 We will write all particles over on the right.  We simply have to have as many particles as 
anti-particles, since the charges of each is the same.  We are interested only in those with at least 
three particles and at most four, but there is no way you can make the charge balance with just 
three.  The renormalizable matrix elements will be 

 

* * * * * *
1 1 1 1 1 1 1 2 1 1 2 2

* * * * * *
1 2 1 1 1 2 1 2 1 2 2 2

* * * * * *
2 2 1 1 2 2 1 2 2 2 2 2

0 , 0 , 0 ,

0 , 0 , 0 ,

0 , 0 , 0 .

           

           

           

  

  

  

 

To see if they are real, take the Hermitian conjugate (which moves them all to the other side), 
then bring them back to the right-hand side by changing all particles to anti-particles.  If you end 
up with the same thing, then the quantity is real.  We find that the three on the diagonal are real: 

 * * * * * *
1 1 1 1 1 2 1 2 2 2 2 20 , 0 , 0 .             

The other six are complex, but they come in pairs.  Roughly speaking, the nine matrix elements 
above form a rank three Hermitian matrix, so we have 

 

** * * *
1 1 1 2 1 2 1 1

** * * *
1 1 2 2 2 2 1 1

** * * *
1 2 2 2 2 2 1 2

0 0 ,

0 0 ,

0 0 .

       

       

       







 

 

 

 

 
 
 
(b) Suppose instead that 2 1Q Q  .  Show that you don’t have to redo the work of part 

(a) (hint: it is arbitrary what we call a particle and what we call an anti-particle). 
 
 It is pretty easy to see that if 2  has the negative of the charge of 1 , then *

2  has the 

same charge as 1 .  Hence we can simply replace 2  with *
2  in our previous answers.  For 

example, there are nine basic matrix elements, which are 



 

* * *
1 1 1 1 1 1 1 2 1 1 2 2

* * * * * *
1 2 1 1 1 2 1 2 1 2 2 2

* * * * * * * * *
2 2 1 1 2 2 1 2 2 2 2 2

0 , 0 , 0 ,

0 , 0 , 0 ,

0 , 0 , 0 .

           

           

           

  

  

  

 

The three on the diagonal are real, the others come in complex pairs. 
 

(c) Repeat part (a) if 2 12Q Q . 

 
 This time you can have either pairs of 1  and *

1 , or 2  and *
2 , or you can exchange 

two 1 ’s for a 2 .  It isn’t too hard to figure out that the only non-zero basic matrix elements are 

 * * * * * * * * *
1 1 1 1 1 2 1 2 2 2 2 2 2 1 1 1 1 20 , 0 , 0 , 0 , 0 .                       

The Hermitian property lets you bring them all to the other side, and then you use the anti-
particle property to bring them all back to the right.  This turns all particles into anti-particles, 
and then if you end up with the same thing, the expression is real.  We find this way that the first 
htree expressions are real, and the last two are complex conjugates of each other. 
 

(d) Repeat part (a) if 2 15Q Q .  Argue that the number of particles (minus anti-

particles) for 1 and 2  are separately conserved.  Such a conservation law that is 

demanded by renormalizability is called an accidental symmetry.  Baryon number 
in the Standard Model is an accidental symmetry. 

 
 If you have an excess of 2  or *

2 , you would have to balance it out by including five 

1 ’s or *
1 ’s, which would not be renormalizable.  Hence the only combinations allowed are 

 * * * * * *
1 1 1 1 1 2 1 2 2 2 2 20 , 0 , 0 .               

These will all be real.  In each case, the separate 1  number and 2  number are conserved.  This 

will be true if you move some of the particles to the other side using the anti-particle property as 
well, so ultimately each of these quantum numbers is separately conserved. 
 
 
8. Suppose two particles are moving along the x3 axis, so that  1 1 1,0,0,p E p   and 

 2 2 2,0,0,p E p  . Note that one particle might be at rest.  Show that the combination 

2 1 1 2E Ep p  is unaffected by a boost along the x3-axis. 

 
 When we perform such a boost, the momenta become 

 1 1 2 2, .p p p p     
       

Writing this out explicitly, we find 



 1 1 1 2 2 2

1 1 1 2 2 2

cosh sinh , cosh sinh ,

cosh sinh , cosh sinh .

E E p E E p

p p E p p E

   
   

    
    

 

The only non-zero component is the z-component, so we have 

 

  
  

 
 

2 1 1 2 2 2 1 1

1 1 2 2

2 2
2 1 1 2 2 1 2 1

2 2
1 2 2 1 1 2 1 2

2 2
2 1 1

cosh sinh cosh sinh

cosh sinh cosh sinh

cosh sinh cosh cosh sinh sinh

cosh sinh cosh cosh sinh sinh

cosh sinh

E p E p E p p E

E p p E

E p p p E E p E

E p p p E E p E

E p E p

   

   

     

     

 

     

  

   

   

    2 2
2 2 1 1 2sinh cosh .E p E p   

 

So the proof is complete. 
 


