
Solutions to Problems 2b 
 
 
7. [10] Suppose an electron/positron collider collides beams with energies E1 and E2 head 

on.  What is s?  Treat the electron and positrons as massless.  If the BABAR experiment 
is trying to create the  4s  resonance with mass 10.58 GeVM   by colliding electrons 

with energy 1 9.00 GeVE   electrons, what energy must the positrons be? 

 
 To make things simple, let’s collide them coming in on the x3-axis.  Then since they are 
being treated as massless, the momenta are equal to the energies.  Hence the four-momenta are 

    1 1 1 2 2 2,0,0, , ,0,0, .p E E p E E    

The total initial momentum and s are given by 
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To create the  4s  resonance, we must have sufficient energy, so that s = M2.  We therefore 

have 
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8. [10] A particle of mass M decays to two particles.  Find a general formula for the 

magnitude of the final three-momentum: 
(a) [5] If the mass of each final particle is m; 
(b) [5] If the mass of one final particle is m and the other is 0; and 
(c) If the mass of the final particles are 1m  and 2m , and check that it leads to the 

correct results for parts (a) and (b). 
 
 Let the momenta of the initial particle be p and let the momenta of the final particles be 
p1 and p2.

  Then conservation of momentum tells us that 1 2p p p  .  We rearrange this to 

1 2p p p  , and then square it. 

  22 2 2 2 2 2 2
2 1 2 1 1 2 1 1, 2 , 2 .p p p m p p p p m M p p m           

We now write out the explicit form of the initial momentum and the momentum p1, which gives 
us 

    1 1 1 1 1 1 1 1,0,0,0 and , sin cos , sin sin , cos , 0 .p M p E p p p p p ME ME           

Substituting this in then give us 
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We can now quickly work out the answers to each of the parts.  For part (a), 1 2m m m  , and 

this simplifies to 1
1 2E M , and we then find the momentum from  

 2 2 2 21
1 1 1 4 .p E m M m     

For part (b), we can pick the first particle to be massless, so we have 
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For part (c) we simply start with the most general expression and deal with the resulting mess. 
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Since it wasn’t assigned, I’m not going to show how it simplifies to the expressions we found 
before. 
 
 



9. [10] For any process where two particles of momenta p1 and p2 collide to make two final 
particles with momenta p3 and p4, define the Mandelstam variables by 

            2 2 2 2 2 2

1 2 3 4 1 3 2 4 1 4 2 3, , .s p p p p t p p p p u p p p p             

 Show that s t u   is a constant, and determine it in terms of the masses 2 2
i im p . 

 
 The expressions given are all equal to each other since we have, from conservation of 
four-momentum, 1 2 3 4 .p p p p    If you rearrange this in various ways and square it, you can 

prove all the pairs match.  We square these expressions out to yield 
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Now, it is not obvious how to proceed, but the quickest way is to take the conservation of 
momentum rule and solve it for any one of the momenta, say 4 1 2 3p p p p   .  Squaring,  

 

 

     

22
4 1 2 3

2 2 2 2
4 1 2 3 1 2 1 3 2 3

2 2 2 2 2 2 2 2 2
1 2 3 1 2 1 3 2 3

2 2 2
1 2 3

2 2 2 2
1 2 3 4

,

2 2 2

,

.

p p p p

m m m m p p p p p p

m m m s m m m m t m m u

s t u m m m

s t u m m m m

  

        

           

     

     

 



10. [15] The neutral Kaon system has two particles 0K  and 0K .  These particles are not 

mass eigenstates; they are related to mass eigenstates by 

    1 1
0 1 2 0 1 22 2

, .K K K K K K     

 These are eigenstate of the Hamiltonian, with energies 1 1 1H K M K  and 

2 2 2H K M K .  Suppose at 0t  , we have   00t K   .  What is  t  at all 

times?  At time t, the particle is measured to see if it is a 0K  or 0K .  What is the 

probability of each of these?  If 6
1 2 3.484 10  eVM M    , at what time t will the 

particle first be 100% 0K ? 

 
 The first step we need to do is to write the initial state in terms of the Hamiltonian 
eigenstates.  This is pretty easy.  We have  

    1
0 1 22

0 .t K K K      

Since the particles are at rest, these have energies i iE M .  Then using equation (2.43), the wave 

function at arbitrary time is given by 

    1 21
1 22

.iM t iM tt K e K e     

 So far so good.  We now want to know what the probability is at a later time that this is in 

the state 0K .  This is given by 
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It is not hard to show that similarly,    1 1
0 1 22 2 cosP K M M t     .  To get  0 1P K  , we 

need the cosine to be – 1, which first occurs at .    We therefore have 
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You may well wonder how such short distances are measured, but the particles are often moving 
relativistically, so we actually measure the distance and deduce the time. 
 


