Solutions to Problems 2b

7. [10] Suppose an electron/positron collider collides beams with energies E; and E; head
on. What is s? Treat the electron and positrons as massless. If the BABAR experiment

is trying to create the Y(4s) resonance with mass M =10.58 GeV by colliding electrons
with energy E, =9.00 GeV electrons, what energy must the positrons be?

To make things simple, let’s collide them coming in on the x*-axis. Then since they are
being treated as massless, the momenta are equal to the energies. Hence the four-momenta are
p,=(E.0,0,E), p,=(E,,0,0,-E,).
The total initial momentum and s are given by
p,+p,=(E+E,00E-E,),
s=(p,+p,) =(E,+E,) —(E,~E,) =E? +2E,E, + E ~E? + 2E,E, - E? = 4E[E, .
To create the Y (4s) resonance, we must have sufficient energy, so that s = M. We therefore

have

s M? (1058 Gev)’

= =3.11GeV.
4E, 4E, 4(9.00 GeV)

E,=

8. [10] A particle of mass M decays to two particles. Find a general formula for the
magnitude of the final three-momentum:
(@) [5] If the mass of each final particle is m;
(b) [5] If the mass of one final particle is m and the other is 0; and
(c) If the mass of the final particles are m, and m,, and check that it leads to the

correct results for parts (a) and (b).

Let the momenta of the initial particle be p and let the momenta of the final particles be
p1 and p2. Then conservation of momentum tells us that p = p, + p,. We rearrange this to

p—p, = Pp,, and then square it.
pZ=(p-p)', M=p’-2p-p+pi, Mi=M2-2p-p+m:.

We now write out the explicit form of the initial momentum and the momentum p;, which gives
us

p=(M,0,0,0) and p,=(E, p,sinfcosg, p,sindsing, p,cosd), p-p,=ME -0=ME,.

Substituting this in then give us



>=M?-2ME, +m/ ,
MPemi-m]

2M
We can now quickly work out the answers to each of the parts. For part (a), m, =m, =m, and

this simplifies to E; =3M , and we then find the momentum from

El

P :\/E12_m12 = %Mz_mz :
For part (b), we can pick the first particle to be massless, so we have
M?—m?
oM
For part (c) we simply start with the most general expression and deal with the resulting mess.
2M L AM? | —2M 2m? - 2m2m? S

P, = El

2 _E2_m2= _
Py 1 1 ( 4AM ?

plzﬁ\/M“erl‘%m;‘—ZMsz—2M2m22—2m12m§ :

Since it wasn’t assigned, I’m not going to show how it simplifies to the expressions we found
before.



9. [10] For any process where two particles of momenta p; and p; collide to make two final
particles with momenta p; and ps, define the Mandelstam variables by

s=(p+p,) =(Pa+p) . t=(p—p:) =(P—0s) . u=(p—ps) =(p,—ps)"-

Show that s+t+u is a constant, and determine it in terms of the masses m? = p’.

The expressions given are all equal to each other since we have, from conservation of
four-momentum, p, + p, = p,+ p, . If you rearrange this in various ways and square it, you can

prove all the pairs match. We square these expressions out to yield
= +M; +2p, - p, =M +M; +2p;- P, ,
t=m’+ml-2p,-p,=m>+m;-2p,-p,,
U= +m;—2p,-p, =M, +M; —2p,- ;.

Now, it is not obvious how to proceed, but the quickest way is to take the conservation of
momentum rule and solve it for any one of the momenta, say p, = p,+ p, — p;. Squaring,

pf=(p1+ pz_p3)2'

Mg =M +m; +m; +2p, - P, —2p, - P~ 2P, - P
:mf+m§+m§+(s—mf—mzz)—(mf+m§—t)—(mzz+m§—u)
=s+t+u—m?>—m?—m?,

2 2 2 2
S+t+u=m +m; +m;+m;,.



10. [15] The neutral Kaon system has two particles |KO> and ‘KO>. These particles are not
mass eigenstates; they are related to mass eigenstates by

[Ka) =3 (1K) +[K2)) - [Ko) =3 (1K) =[K2)):
These are eigenstate of the Hamiltonian, with energies H|K,)=M,|K;) and
H|K,)=M,|K,). Supposeat t=0, we have |¥(t=0))=|K,). Whatis |¥(t)) atall
times? At time t, the particle is measured to see if itis a |K,) or |K,). What s the

probability of each of these? If M, —M, =3.484x10°° eV, at what time t will the
particle first be 100% ‘ IZO> ?

The first step we need to do is to write the initial state in terms of the Hamiltonian
eigenstates. This is pretty easy. We have

‘W(t=0)>=|K0>=%(| K1>+|K2>) :

Since the particles are at rest, these have energies E; = M,. Then using equation (2.43), the wave
function at arbitrary time is given by

¥ (1)) :%(| Kye ™ +| K2>e“Mzt) :
So far so good. We now want to know what the probability is at a later time that this is in
the state‘ KO>. This is given by

P(K,)=|(Ky| (1) >r -

iMt —|M2t

SE ()™ ke
‘e, %( e—IMzt) ( —iM,t _e—iM2t>

_ (eiMlt_elet)( —|M1t_ —iM,t ) %(1 elet |M1t_ |Mlt—iM2t+1)

FN I N S

{2~ 2005 (M, ~M,)c]) =3 eos[ (M, M, )]

It is not hard to show that similarly, P(K,)=4+%cos|[ (M, —M,)t]. Toget P(K,)=1, we
need the cosine to be — 1, which first occurs at =. We therefore have

7 (6 592x107* eV -s)
M, - M, 3.484x107° eV

t= =5.94%x10" s=0.594 ns.

You may well wonder how such short distances are measured, but the particles are often moving
relativistically, so we actually measure the distance and deduce the time.



