
Solutions to Problems 2a 
 
 
1. [10] Find the determinant of each of the Lorentz transformations eqs. (2.6) and (2.7).  

Assuming the result is the same for all rotations and boosts, show that no combination 
of rotations and boosts can produce a parity transformation  nor a time reversal 

transformation . 

 
 The determinants can be found by starting with any row and multiplying each item in that 
row by the determinant of the “minor” after we delete the corresponding row and column, and 
introducing a minus sign whenever the combined row plus column number is odd.  We therefore 
have 
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The determinants of parity and time reversal are easily found 
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The determinant of any combination of rotations and boosts will the product of the determinants 
for each one, and therefore will be 1.  Since parity and time reversal both have determinant -1, 
they must not be a combination of such operations. 
 
 
 



2. [15] Simplify each of the following:  
(a)  [3] g g

  
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The trick here is to remember that there is an implied sum, so this is the sum of four terms. 
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 Whenever two factors are multiplied with one index up and one index down, or with a 
metric tensor g connecting them, it turns into a dot product, so we have 
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(c) [5] 1 2 3 4p p p p  
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 We’d like to use identity (2.17a), but this only works if the last two indices on the first 
Levi-Civita tensor match the last two on the second one.  Fortunately, because the Levi-Civita 
tensor is completely anti-symmetric, we can rearrange the indices in any order we want if we just 
introduce a minus sign every time we switch a pair of indices, so that      and 

  
     .  We therefore have 
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4. [15] Show that a particle with E m  has approximate reciprocal velocity 
2 21 1 2v m E  .  If two neutrinos with different energies 1E  and 2E  arrive at the same 

time after travelling a distance d, find a formula for the difference  in time t .  In 1987, 
two neutrinos with the same mass and energies 1 6 MeVE   and 2 20 MeVE   arrived 

from SN1987a after travelling a distance 160,000d   light years.  Assuming they left at 
most 10t   seconds apart, get an approximate limit on the mass m of the neutrinos. 

 
 Starting with eq. (2.8), we have 
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 The amount of time it takes to travel a distance d is given by t d v , so the differences 
in times for traveling would be 
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The light traveled a distance 160,000d   years (remember, we set c = 1), so we have 
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For reasons I can’t recall, the actual limits was a bit better than this, but this was (at the time) one 
of the stronger limits on neutrinos masses. 
 
 



6. [10] Find a formula for s if particles of mass m and energy E collide with a stationary 
target of mass m.  If you use B = 10 T magnets, how large in Earth radii would you have 

to make a proton collider to reach 8.00 TeVs  ? 
 
 To make things simple, let’s let the momentum of the moving particle be  1 ,0,0,p E p , 

and of the stationary one  2 ,0,0,0p m .  Then 
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If we want to reach 8.00 TeVs  , we need to have 
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Because the protons are ultra-relativistic, we approximate E p  (remember c = 1), and using eq. 
(1.5), we have 
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Hence the LHC can outperform (at least in terms of energy) a fixed target proton  machine the 
size of the Earth.  Now you know why we build colliders. 
 


