
Solutions to Problems 1 
 
 
2. It is possible that the universe has small extra dimensions.  If so, we should be 

able to detect them if we use particles with wavelength shorter than the scale L 
of the extra dimension.  Having performed experiments with 4 TeV protons 
without seeing hints of extra dimensions, estimate the maximum size this extra 
dimension might be in meters. 

 
 We simply use the relationship 2 2p    .  First we need to find the 
momentum, which for relativistic neutrinos is effectively the same as the energy.   Hence 
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I have no idea exactly what the real limit is, but obviously it is pretty short. 
 
 

5. By July 4, 2012, approximately 5 fb-1 of integrated lumonisity at 8 TeVs   had 
been analyzed by the CMS and ATLAS detectors.  How many Higgs particles 
were produced?  The main signal seen was from the process H  .  The 
branching ratio for this decay is about 0.25%.  How many H   events 
should have been seen by each experiment? 

 
 We need the cross-section, which we get from the link in the previous problem.  
Looking at http://arxiv.org/abs/1012.0530, we see from table 3 that the cross section for 

Higgs production at 8 TeVs   for a  mass of 125 GeV is about 19.81 pb and for a mass 
of 130 GeV is about 18.34 pb.  The numbers look vaguely linear in this region, so using a 
linear fit, we estimate at 126 GeV the cross-section is about 19.52 pb.  We multiply this 
by the integrated luminosity to obtain 

   
12

1
15

10  b
19.52 pb 5.00 fb 97.6 97,600 .

10  bH HN Ldt



     

According to table 6, the branching ratio to photons is not 0.25%, but 0.23%, so the 
number of decays is 

       97,600 0.0023 224 .HN H N BR H       

This is the approximate number of events expected in each of the two detectors. 
 
 
 
 
 
 
 



7. Look up the total lifetime of the    and K   mesons (summary tables, mesons).  
What would the rate   in GeV be?  Then look up the branching ratios in each 

case to decay to   .  Find the partial rates        and  K      

in each case, and their ratio. 
 
 According to the particle data book, 82.60 10  s

   and 81.23 10  sK
  .  As 

noted in the text, 1   , so we have 
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The branching ratio to    is  99.99% for the pion and 63.55% for the kaon.  We 

multiply by these numbers to get the partial decay rates: 
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As we will later realize, the denominator is larger overwhelmingly because of the higher 
mass of the kaon. 
 
 
8. Find a dimensionless combination of e, 0 ,   and c.  Then, setting 0 1c    , 

find the dimensionless value of the fundamental charge e. 
 
 The values of these constants are 
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 We note that e has C in it, and 0  has C2, so if we square the former and divide by 

the latter, the C will cancel out.  This will leave kg in the numerator, but if we divide by 
 , that will go away, and it isn’t hard to see that if you then divide by c, you get 
something dimensionless.  So we have 
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The quantity on the right is true in any units, but in particle physics units, the factors in 
the denominator on the left are 1, and this formula simplifies to 2 0.09245e  , or taking 
the square root, 

 0.09164 0.3027 .e    

We could have gotten the same answer starting from the equation on the inside front 
cover 2 4 1 137.04e    

   

9. By using a suitable combination of   and c, write Newton’s constant in the form 
n

N PG M , where PM  has units of mass or energy, and is called the Planck mass.  

Determine the integer n and the value of PM  in GeV.  If a proton collider were 

operating at PE M  and used 10 TB   magnets, what would be its radius in 

light-years? 
 
 The relevant constants are 
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Let’s start by writing it as a mass, which we can do if we get rid of all the meters and 
seconds.  It is clear that NG   will have only one factor of m in the numerator and one 

factor of s in the denominator, so if we then divide by c we get 
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Since it is mass to the minus two, we write it in the form 2
PM  , so that by definition, 
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In particle physics units, we would write this as 2
PG M  .  We then convert this to an 

energy by using the conversion 261 kg 5.6 10  GeV  , so 

   8 26 192.177 10  kg 5.6 10  GeV/kg 1.22 10  GeV .PM       



 We can then find how large a collider we need to reach this energy using eq. 
(1.5).  The momentum is effectively the same as the energy, and we are working in units 
where c = 1, so 
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It is inconceivable we will ever reach this energy without new technology. 
 
 
14. Perform the following integrals: 

(a)  2 2 2
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The argument of the delta function vanishes at 2 2E m p , so  

 
     1

2

2 2

12 2 2 2 2

0

1
.

2 2

n
nn

E m

E
E E m dE m

E


 

 

    
p

p p
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 As we argued in class, the first two Heaviside functions restrict the upper limit on 
the energy integrals to each be 1

2 m , and the third one demands that 1
1 2 2E E m  .  If we 

let the inner integral be the E2 integral, then we have 
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(c)    2 22 4 4 41 2sin sin 1 cosW WE E d           (note: W is a constant) 

 

 There is an integral 
2
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  , which is easy, and an integral over  , which I 

like to do by changing to cosz   
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It is unclear what further simplification is desirable. 
 
 

(d) 
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 The logarithm term can be written more succinctly as  1tanh p E  if we want.   


