Solutions to Problems 1

2. ltis possible that the universe has small extra dimensions. If so, we should be
able to detect them if we use particles with wavelength shorter than the scale L
of the extra dimension. Having performed experiments with 4 TeV protons
without seeing hints of extra dimensions, estimate the maximum size this extra
dimension might be in meters.

We simply use the relationship Ap =2z#%=2x. First we need to find the
momentum, which for relativistic neutrinos is effectively the same as the energy. Hence
2 27(0.197 GeV -fm)
 p  4000.0 GeV

A =3.09x10" fm =3.09x10™" m.

| have no idea exactly what the real limit is, but obviously it is pretty short.

5. By July 4, 2012, approximately 5 fb™ of integrated lumonisity at Js =8 TeV had
been analyzed by the CMS and ATLAS detectors. How many Higgs particles
were produced? The main signal seen was from the process H — y». The

branching ratio for this decay is about 0.25%. How many H — yy events
should have been seen by each experiment?

We need the cross-section, which we get from the link in the previous problem.
Looking at http://arxiv.org/abs/1012.0530, we see from table 3 that the cross section for
Higgs production at Js =8 TeV fora mass of 125 GeV is about 19.81 pb and for a mass
of 130 GeV is about 18.34 pb. The numbers look vaguely linear in this region, so using a
linear fit, we estimate at 126 GeV the cross-section is about 19.52 pb. We multiply this
by the integrated luminosity to obtain
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N, = o, [ Ldt =(19.52 pb)(5.00 fb™*) :97.6%z97,600.

According to table 6, the branching ratio to photons is not 0.25%, but 0.23%, so the
number of decays is

N(H = 77)=N,BR(H —> yy)=(97,600)(0.0023) = 224.

This is the approximate number of events expected in each of the two detectors.



7. Look up the total lifetime of the z© and K™ mesons (summary tables, mesons).
What would the rate T" in GeV be? Then look up the branching ratios in each

case to decay to x'v,. Find the partial rates F(;z+ — y*v#) and 1“(K+ — ,u*v#)
in each case, and their ratio.

According to the particle data book, z. =2.60x10° s and 7, =1.23x10° s. As
noted in the text, T' =7, so we have

h 6.582x10"° eV's

[ =r'=— > 6010 =2.53x10"° eV =2.53x10"" GeV,
T, .60x S
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T=1 _ 058210 fv > _5.32x10° eV =5.32x10"" GeV .
‘ 1.238x10°% s

The branching ratio to x'v,, is 99.99% for the pion and 63.55% for the kaon. We
multiply by these numbers to get the partial decay rates:

[(z" = u'v,)=T,BR(z" - u'v,)=(253x10"" GeV)(0.9999) = 2.53x10™ GeV,
T(K"—>u'v,)=TBR(K" - u'v,)=(5.32x10"" GeV)(0.6355)=3.38x10""" GeV,

F(z' >u'v,) 253

GEYY =0.749.

As we will later realize, the denominator is larger overwhelmingly because of the higher
mass of the kaon.

8. Find a dimensionless combination of e, &,, # and c. Then, setting &, =7 =c=1,
find the dimensionless value of the fundamental charge e.

The values of these constants are

e=1.602x107" C,

g, =8.854x10% C**/m°/kg,
7 =1.055x10"* kg-m?/s,

€ =2.998x10° m/s.

We note that e has C init, and ¢, has C?, so if we square the former and divide by

the latter, the C will cancel out. This will leave kg in the numerator, but if we divide by
h, that will go away, and it isn’t hard to see that if you then divide by c, you get
something dimensionless. So we have



o (1.602x10 C)

- =0.09164.
gl (8.854x10™ C*s*/m*/kg)(1.055x10"* kg-m?/s)(2.998x10° m/s)

The quantity on the right is true in any units, but in particle physics units, the factors in
the denominator on the left are 1, and this formula simplifies to e* =0.09245, or taking
the square root,

e =+/0.09164 =0.3027 .

We could have gotten the same answer starting from the equation on the inside front
cover e’/4x =1/137.04

9. By using a suitable combination of 7z and c, write Newton’s constant in the form
G, =Mg;, where M, has units of mass or energy, and is called the Planck mass.

Determine the integer n and the value of M, in GeV. If a proton collider were
operating at E=M_, and used B =10 T magnets, what would be its radius in
light-years?

The relevant constants are
G, =6.674x10" m®/kg/s®,
h=1.055x10"* kg-m?/s,
c=2.998x10° m/s.

Let’s start by writing it as a mass, which we can do if we get rid of all the meters and
seconds. It is clear that G, /7 will have only one factor of m in the numerator and one

factor of s in the denominator, so if we then divide by ¢ we get

11 .3 2
Gy _ 6.674x10" m*/kg/s =211x10° kg™ .

e (1.055x10% kg-m?/s)(2.998x10° mis)

Since it is mass to the minus two, we write it in the form M;?, so that by definition,

M2 =88 22114105 kg ? |
e

M, = (2.11x10° kg 2) " =2.177x10° kg.

In particle physics units, we would write this as G = M;?. We then convert this to an
energy by using the conversion 1 kg =5.6x10*° GeV , so

M, =(2.177x10°° kg)(5.6x10% GeV/kg)=1.22x10" GeV .



We can then find how large a collider we need to reach this energy using eq.
(1.5). The momentum is effectively the same as the energy, and we are working in units
where c =1, so

o- (?j (%} (299.8 GeV),

19 4.066x10" km)c
R L2010 kb )
299.8-10 (2.998x10° kmis)(3.156x10"sly)

It is inconceivable we will ever reach this energy without new technology.

14. Perform the following integrals:
(a) J: E"5(E® —p® —m?) for arbitrary n.

The argument of the delta function vanishes at E =/p*+m?, so
En
2B|_

3(n-1)

I:E”cS(EZ—pZ—mz)dEz :l(p2+m2)

() [ 6E.[; dE, 0(4m~E,) 6(3m~E,) 0(E, + E, ~3m) (4m’E, ~mE})

As we argued in class, the first two Heaviside functions restrict the upper limit on
the energy integrals to each be $m, and the third one demands that E, + E, ><m. If we

let the inner integral be the E; integral, then we have
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(©) j[(l—ZSinz%)z E4+Sin4HWE4(1+cos¢9)1dQ (note: 4, is a constant)

There is an integral I;ﬂdqﬁ =2 , which is easy, and an integral over 8, which |
like to do by changing to z =cosé

J| (-2sin g, )" E*+sin ,E* (L+cos0)’ |d0

= 27zE4J:11dZ [(1—23in2 B )2 +sin' g, (1+2z+ zz)]

= 27E* [(l—Zsin2 By )2 z+sin* g, (z+72° +%23)}1
=]

= 27E* [2(1—25in2 6, )2 +sin* 4, (2+0+§)} = 47E*(1-4sin’ g, +%sin* 6, ).

It is unclear what further simplification is desirable.
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The logarithm term can be written more succinctly as tanh’l( p/E) if we want.



