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II. SU(2) and SO(3) 
 
 
 The first interesting continuous group; that is, the first that is not commutative, 
has three generators.  You have already encountered this group in quantum mechanics, 
and we now turn our attention to this group. 
 
 
A. O(3) and SO(3) 
 
 The laws of physics, so far as we can tell, are invariant under rotations.  A 
rotation is a linear transformation of the coordinates, R→r r , where R is a 3 3× real 
matrix that preserves distance from the origin.  In other words, 
 

 ( ) ( ) ( )22 T T TR R R R R= = =r r r r r r  (2.1) 

for all vectors r.  The only way this can work for arbitrary r is to have 

 TR R = 1  (2.2) 

A square matrix satisfying (2.2) is called an orthogonal matrix and the set of all such 
3 3×  matrices is called O(3). 
 If we take the determinant of (2.2), keeping in mind that TR R= , we see that 

2 1R = , and this implies 

 1R = ±  (2.3) 

Thus the set of all such rotations naturally breaks into two groups, those with determinant 
1, called proper rotations, and those with determinant – 1, called improper rotations.  If 
we define the special element J = −1 , the inversion matrix, then it’s 
pretty easy to show that all improper rotations are of the form R JR′= , 
where R′  is a proper rotation.  It follows that the group O(3) is really a 
direct product of the inversion group { },E J=J  and the group of all 
proper rotations, so that 

 ( ) ( )3 3O SO= ×J  (2.4) 

The group J  has irreps that are trivial to work out, as given in Fig. 2-1, 
so the problem of describing O(3) is just reduced to describing the 
connected group SO(3).1 
 
 

                                                 
1 The same rule applies, ( ) ( )O n SO n= ×J  in any odd number of dimensions.  Even dimensions are 
more complicated, but we will simply disregard this case since we are mostly interested in connected 
groups anyway. 

J E J 
+ 1 1 
- 1 -1 

Figure 2-1:  
Character 
table for 
the 
inversion 
group. 
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B. Irreps of SO(3) 
 
 The first step might seem logically to determine if SO(3) is compact, since if it 
does, it will have unitary representations.  Fortunately, in this case (and every case we 
will focus on), this step is unnecessary, because we already know that SO(3) has a unitary 
representation, namely, ( )R RΓ =  is an orthogonal representation of the group, and since 
any orthogonal matrix is also unitary, this so called defining representation is unitary.  
We’d now like to work out the generators and commutation relations for the group SO(3). 
 The generators take the form ( )( ) ( ) ( )expR R iΓ = = − ⋅x x x T , but since ( )R x  is 
always real, we must have i ⋅x T  real, which implies the generators Ta  must be pure 
imaginary.  They must also be Hermitian, which implies they are anti-symmetric.  There 
are three linearly independent such matrices, which are normally chosen as 

 1 2 3

0 0 0 0 0 0 0
0 0 , 0 0 0 , 0 0 .
0 0 0 0 0 0 0

i i
T i T T i

i i

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟ ⎜ ⎟= − = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.5) 

These are “orthonormal” in the sense that ( )tr 2a b abT T δ= .  These three operators satisfy 
the commutation relations 

 [ ],a b abc c
c

T T i Tε= ∑  (2.6) 

so the structure constants are abc abcf ε= .  It is easy to demonstrate that, in fact, (2.5) is 
the adjoint representation, since ( )a abcbc

T iε= − .  Equation (2.6) is reminiscent of the 
commutation relations for angular momentum operators in quantum mechanics, and this 
is no coincidence; apart from a factor of = , angular momentum operators are the 
generators of rotations. 
 Our goal now is to determine all the irreps of the group SO(3), or at least as much 
as possible, from the structure constants, which is the same as the commutation relations 
(2.6).  We already have one representation of the generators of this group, namely (2.5), 
but there are many others.  We now let Ta stand for an arbitrary representation of these 
three generators.  Now, no two of these generators commute with each other, but we can 
pick one of the three (normally chosen as T3) and diagonalize it by performing an 
appropriate similarity transformation.  In the new basis, our generator T3 will now be 
diagonal, which we write as 

 3T m m m=  (2.7) 

where m  is a basis vector labeled by its eigenvalue under the now diagonal operator T3.  
We now define three new operators:2 

 2 2 2 2
1 2 3T T T= + +T  (2.8a) 

 1 2T T iT± = ±  (2.8b) 

                                                 
2 Georgi defines T± to be (2.8b) divided by a factor of root 2. 
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The operators T±  are called raising and lowering operators respectively.  These operators 
can be shown to have the following useful properties: 

 2 , 0,aT⎡ ⎤ =⎣ ⎦T  (2.9a) 

 [ ]3,T T T± ±= ± , (2.9b) 

 2 2
3 3T T T T±= + ±T ∓ . (2.9c) 

 †T T± = ∓  (2.9d) 

 Since T2 commutes with all the generators of the group, it will commute with all 
the elements of the group, and hence by Schur’s Lemma, for an irrep it must be a 
constant matrix.  We will name its value 2j j+ , for reasons that will become apparent 
later on, so that 

 ( )2 2m j j m= +T  (2.10) 

 Now, consider the vector T m± .  It is easily demonstrated that  

 ( ) [ ]( ) ( )( )3 3 3, 1T T m T T T T m T m T m m m T m± ± ± ± ± ±= + = ± + = ±  (2.11) 

Therefore T m±  is proportional to some new vector which is also an eigenvector of T3, 

1T m m± ∝ ± We can determine the proportionality constant by noting that 

  ( )2 † 2 2 2 2
3 3T m m T T m m T T m m T T m j j m m± ± ± ±= = = − = + −T∓ ∓ ∓   

  (2.12) 

It therefore follows that 

 2 2 1T m j j m m m± = + − ±∓  (2.13) 

It is obvious from (2.12) that the expression 2 2j j m m+ − ∓  must be non-negative.  The 
problem is that (2.13) implies that we can apparently raise (or lower) m indefinitely, and 
therefore m should eventually become so large that 2 2 0j j m m+ − <∓ .  How can we 
avoid this catastrophe?  The answer is that there was a flaw in our claim that T m±  is a 

new eigenvector of T3.  Eigenvectors are, by definition, and it is possible that T m±  will 

vanish, hence producing nothing new.  For T m+ , we see this occurs when 
2 2 0j j m m+ − − = ,  or m j= , while for T m− , it occurs when m j= − .  We therefore 

conclude that m takes on the values 

 , 1, , 1,m j j j j= − − + −…  (2.14) 

Note that this implies that the highest value of m must differ form the lowest one by an 
integer, so 2j is an integer, implying that j is an integer or half-integer. 
 One detail that might be of concern is whether there might be two (or more) states 
with the same eigenvalue m in the same irrep of SO(3).  Is it possible that if we start with 
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a state m, and then raise (or lower) it, and then lower (or raise) it, we end up with a 
different state?  The answer is no.  It is easy to show with the help of (2.9c), (2.7) and 
(2.10) that ( )2 2T T m j j m m m± = + −∓ ∓ , so in fact we never get new states by this 
process. 
 We are now prepared to write our matrices T3 and T± explicitly.  We need to pick 
an order to list our basis vectors, which is commonly chosen to be { }, 1 ,j j j− −… .  
In this basis, we can see from (2.7) and (2.13) that 

 2 2
3 , 1andmm m mm T m m m T m j j m mδ δ′ ′+ +′ ′= = + − −  (2.15) 

Written as a matrix, this would be 

 ( ) ( )
3

0 0 0 2 0
0 1 0 0 0 0

and
0 2

0 0 0 0 0 0

j j

j j
j

T T
j

j

+

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟− ⎜ ⎟⎜ ⎟= = ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

" "
" %

# # % # # %
"

 (2.16) 

where the non-zero terms in T+ are always just one off the diagonal.  Note that the 
dimension of this representation is 2j + 1.3  We have added the superscript index ( )j

aT  
because we will label our irreps by the value of j.  The remaining matrices can then be 
determined from 

 ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )†
1 1
2 2, ,j j j j j j j j

x yT T T T T T i T T− + + − − += = + = −  (2.17) 

Once we have all these matrices, the representation is given by 

 ( ) ( )( ) ( )( )expj jR iΓ = − ⋅x x T  (2.18) 

We will later be particularly interested in the first few of these irreps., for which the 
explicit form of T+ is: 

 ( ) ( ) ( ) ( ) ( )31
220 1

0 3 0 00 2 0
0 1 0 0 2 0

0 , , 0 0 2 , .
0 0 0 0 0 30 0 0

0 0 0 0

T T T T+ + + +

⎛ ⎞⎛ ⎞ ⎜ ⎟⎜ ⎟⎛ ⎞ ⎜ ⎟= = = =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠

 (2.19) 

 Interestingly, the defining representation given by (2.5) does not seem to 
correspond to any of these irreps, but as you will demonstrate in a homework problem, in 
fact it is equivalent to the j = 1 irrep. 

                                                 
3 The irrep (j) is sometimes instead labeled by its dimension, 2j + 1.  I will try to distinguish these two 
notations (both of which I actually use) by writing one like this: ( )1

2  and the other like this: 2. 
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C. SU(2) and SO(3) 
 
 Consider the j= ½ irrep worked out in the previous section; that is, the set of all 
2 2×  matrices of the form (2.19) where the generators are given by 

 ( )1
2 1

1 2 32

0 1 0 1 0
, , ,

1 0 0 0 1a a

i
T

i
σ σ σ σ

−⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (2.20) 

The three matrices aσ  are called the Pauli matrices. Furthermore, these matrices are 
traceless.  There is a well-known identity that says the determinant of an exponential of a 
matrix is the exponential of the trace,  

 ( ) ( )exp exp trM M= ⎡ ⎤⎣ ⎦  (2.21) 

This can be proven, for example, by first proving it for Mε , where ε  is small, and then 
multiplying it by itself many times to get to M.  Applying this to (2.18) using (2.20), we 
see that 

  ( ) ( )( ) ( )( ) ( )
1 1
2 2exp tr exp 0 1R i ⎡ ⎤Γ = ⋅ = =

⎣ ⎦
x x T  (2.22) 

Of course, since the T’s are Hermitian, the representation will also be unitary.  Hence, all 
of the matrices in this representation are elements of SU(2).  Indeed, it isn’t hard to see 
that the Pauli matrices represent a complete set of traceless Hermitian matrices, and 
therefore this representation includes all elements of SU(2).  Thus the group we’ve been 
studying is not just SO(3), but SU(2) as well. 
 There is one tricky point here that needs to be addressed.  It is not hard to show 
that ( )R x  represents a rotation by an angle x  about an axis pointing in the direction of 

x.  Consider, for the moment, ( )0,0, 2π=x , a rotation about the z-axis by 2π .  It isn’t 
hard to see with the help of (2.16) that 

 ( ) ( )( ) ( )( )
( )

2

2 1
2

3

2

0 0

0 00,0,2 exp 2
0

0 0

ij

i j
j j ij

ij

e

eR i T e

e

π

π
π

π

π π

−

−

⎛ ⎞
⎜ ⎟
⎜ ⎟Γ = − = =⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

1

"

"
# # %

"

 (2.23) 

But since a rotation by 2π  is the same as no rotation, surely ( )2R Eπ = , and therefore 

we would want ( ) ( )( )0,0,2j R πΓ = 1 , which would imply that j must be an integer.  
Hence the representations we worked out in section B do not all work.  For the group 
SO(3), we are restricted to integer j, while for the group SU(2), we can use integer or 
half-integer.  The two groups have the same structure constants, and for small elements 
they multiply exactly the same, but for large elements they are distinct.  One way to state 
this, in the language of the first half of the semester, is that SU(2) is the double group of 
SO(3). 
 Now, that I’ve argued that they are different, let me argue that they are the same.  
As we already know, in quantum mechanics, when you perform a rotation, the wave 
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functions get mixed in with their partners under some irrep.  We know, experimentally, 
the universe looks exactly the same if we, say, rotate by 2π .  If we allowed half-integer 
values of j, then this would not be the case, since rotating some object by 2π  would 
cause its wave function to change sign.  But wait!  Two wave functions are physically 
identical if they differ only by a phase, so in fact, an object would look identical if we 
rotated it by 2π , even if the wave function had a half-integer value of j.  So it really isn’t 
clear that the rotational symmetry of the universe is described by the group SO(3), maybe 
SU(2) is the proper group to describe it after all. 
 The issue is beyond the scope of this lecture, but let’s just say that in non-
relativistic quantum mechanics, the way it works out is that physical particles are 
described by wave functions ( ), tΨ r  which often have multiple components.  If you 
rotate this wave function, there will be two effects: the coordinate r will get rotated, and 
the components of Ψ  will get mixed up with each other.  The rotation of the coordinate 
is always achieved by a representation of SO(3), so that j (or as it is usually called in this 
context, l) must be an integer, and the corresponding operators Ta are called angular 
momentum operators La.4  However, the way the components of Ψ  get mixed  up 
together is not restricted, and therefore j (or as it is usually called in this context, s) may 
be integer or half integer, and the corresponding operators are called spin operators Sa. 
 The distinction between SO(3) and SU(2) may be important to mathematicians, 
but I am going to be sloppy and generally not make such a distinction.  We will define 
groups in terms of their structure constants, and hence whether I say SO(3) or SU(2), I am 
really referring to the group SU(2).  Indeed, it is possible to demonstrate that the group 
Sp(1) is also the same as SU(2), and hence we will write 

 ( ) ( ) ( )3 2 1SO SU Sp= =  (2.24) 

though strictly speaking, the equality on the left isn’t really true. 
 The same problem actually came up before, but we swept it under the rug.  We 
correctly stated in the previous chapter that ( ) ( )2 1SO U= , but when discussing 

representations, we mentioned that the representations ( )qΓ  should properly be restricted 
to integer values of q.  However, just like with SO(3), when talking about U(1) we really 
mean some larger group defined by just the structure constants.   Such a label is justified, 
for example, in SO(2), because when we rotate a system by 2π , there is no guarantee 
that the wave function might not be changed by some phase.  Hence we will, in general, 
allow representations ( )qΓ  of the group U(1) where q takes on any value.  
 
 
D.  Tensor products and other combinations of representations 
 
 We have four different methods of taking representations and creating new ones.   
If we have a particular representation aT  of our generators, we can create a new generator 
by the transformation 1

a aT S T S−′ = , and if we pick S unitary, the new generators will also 
be Hermitian, and will generate a similar unitary representation of SU(2).  It is easily 
                                                 
4 Actually, ( )l

a aL T= = , and the same applies to spin as well, ( )s
a aS T= =  
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demonstrated that the new generators will, however, have exactly the same eigenvalues 
as the old.  Hence, it is easy to tell if two representations are equivalent, just check the 
eigenvalues of Ta.  Indeed, as we will argue below, this is more work than is necessary, 
we can simply check the eigenvalues of T3 
 Now, suppose we took two or more irreps of SU(2) and perform a direct sum, say 

( )1 2j j⊕Γ .  As we can see from (1.57), the eigenvalues of the generators ( )1 2j j
aT ⊕  representa-

tion, which has dimension 1 22 1 2 1j j+ + + , will simply be the eigenvalues of ( )1j
aT  and 

( )2j
aT .  For example, for T3, they will simply be the numbers running from 1j−  to 1j+ , 

and then from 2j−  to 2j+ .  This will normally include a lot of duplicates, which means 

that ( )1 2
3

j jT ⊕  has some degenerate eigenvalues. 
 This suggests a means for decomposing representations.  Suppose we are given a 
representation Γmade from generators aT  which satisfy the correct commutation 
relations, and we are given the task of decomposing this representation into irreps.  We 
will do so using only the generator T3, using a method called the highest weight 
decomposition.  Find the eigenvalues of T3.  Call its highest eigenvalue M.  Now, if this 
representation contained any irrep ( )jΓ  with j > M, then it would have T3 eigenvalues 
bigger than M, so this must not be the case.  If, on the other hand, all the irreps had j < M, 
then all the T3 eigenvalues would be smaller than M.  The inescapable conclusion is that 
Γ  contains at least one copy of ( )MΓ , where j = M.  This implies eigenvalues of T3 
running from – M to + M.  Cross these off the list.  Look at the remaining eigenvalues.  
Find the new highest one M’.  There must now be a copy of ( )M ′Γ .  Continue until all 
eigenvalues are used up.  You now know the decomposition of Γ  into irreps. 
 Now let’s tackle complex conjugation.  What is the decomposition of the 
representation ( )*jΓ ?  As discussed in the previous chapter, the generators of ( )*jΓ  will be 

*
aT− , and since Ta is Hermitian and has real eigenvalues, the eigenvalues of *

aT−  will 

simply be the minuses of the eigenvalues of Ta.  Clearly, since the eigenvalues of ( )j
aT  

just run from – j to + j, they have the same eigenvalues, so by the highest weight 
decomposition algorithm, they will be similar representations, and we conclude 

 ( ) ( )*j j=  (2.25) 

However, this does not mean that the representation is real, it merely means the complex 
conjugate is similar to the original representation.  Indeed, if you use the explicit forms of 
the generators (2.16), it is not hard to see that the matrices you get are not real (except in 
the case j = 0).   On the other hand, a “real representation” is not necessarily explicitly 
real, it might be only similar to a real representation.  For example, the j = 1 
representation is equivalent to the defining representation, (2.5), which is explicitly real, 
so j = 1 really is real. Without proof, I will simply state the ultimate result, which is 

 ( ) real if  is integer,
 is 

pseudo-real if  is half-integer.
j j

j
⎧

Γ ⎨
⎩

 (2.26) 
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 Last, and most interesting, is the subject of taking tensor products of 
representations, a subject normally titled “addition of angular momentum” in quantum 
mechanics.  The representation ( )1 2j j⊗Γ  is produced by the generators ( )1 2j j

aT ⊗ , which 
according to (1.58) take the form 

 ( ) ( ) ( )1 2 1 2j j j j
a a aT T T⊗ = ⊗ + ⊗1 1  (2.27) 

The basis vectors of this representation will look like 1 2 1 2,m m m m⊗ = , and when 
acted on by the generator T3 have the eigenvalue 

 ( ) ( ) ( ) ( )1 2 1 2
3 1 2 3 3 1 2 1 2 1 2, , ,j j j jT m m T T m m m m m m⊗ ⎡ ⎤= ⊗ + ⊗ = +⎣ ⎦1 1  (2.28) 

where m1 and m2 range from –j1 
to +j1 (for m1) and from –j2 to +j2 
(for m2).  This is a total of 
( )( )1 22 1 2 1j j+ +  eigenvalues.  
We now simply decompose it 
using the highest weight 
decomposition.  The highest 
weight is just j1 + j2, and this can 
be only made one way, so it must 
include a ( )1 2j j+ irrep.  We now 
remove the eigenvalues from 

1 2j j− −  to 1 2j j+ .  The 
eigenvalue 1 2 1j j+ −  will 
generally still be present, 
because it can be made two 
ways:  ( ) ( )1 2 1 2, 1,m m j j= −  or 

( ) ( )1 2 1 2, , 1m m j j= − , so we now 

conclude there is a ( )1 2 1j j+ −  
irrep.  The process continues 
until we get down to ( )1 2j j− , 
as illustrated in Fig. 2-2.  At this 
point we will discover that we have accounted for all the eigenvalues of T3, and we are 
done.  Hence our final conclusion is 

 ( ) ( ) ( ) ( )1 2 1 2 1 2 1 21j j j j j j j j⊗ = + ⊕ + − ⊕ ⊕ −"  (2.29) 

 It is useful to know how to explicitly demonstrate the decomposition given in 
(2.29).  What we have demonstrated, in (2.29), is that the representations are similar; so,  

 ( ) ( ) ( ) ( )1 21 2 1 2 1 21 †j jj j j j j jS S−+ + − ⊗Γ ⊕Γ ⊕ ⊕Γ = Γ"  (2.30) 

We’d like to explicitly find the matrix S and; that is to say, we’d like to find its matrix 
elements.  What will these matrix elements look like?  The rows will bear the same labels 

m1 

m2 

 
Figure 2-2:  Grapical illustration of the highest 
weight decomposition of ( )1 2j j⊗  for j1 = 4 and j2 
= 2.  Each dot corresponds to an eigenvalue of T3; 
the corresponding eigenvalue is m1 + m2.  The 
highest eigenvalue is the dot in the upper right 
hand corner, which has m = 6.  We therefore cross 
out all the eigenvalues for the (6) representation 
(red line), and now the highest weight has m = 5.  
We cross out the corresponding eigenvalues for m 
= 5 (blue line), then m = 4 (gold line), m = 3 
(green line) and finally m = 2 (plum line).  At this 
point we have crossed them all out, and are done.
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as ( )1 2j j⊗Γ , so m1 and m2.  The columns will be labeled by the index j, labeling which of 
the ( )jΓ  we are dealing with, as well as by m, which component of that matrix (where m 
runs from j to –j).  They will be given by the overlap between the corresponding 
eigenvectors, or 

1 2 , 1 2m m jmS m m jm= .  It would be nice to tabulate, or come up with a 
formula for, these matrix elements, for every value of j1 and j2.  To avoid confusion, we 
will introduce these labels into the matrix element, writing them as5 

 ( )1 2

1 2 , 1 2 1 2, ; , ,j j
m m jmS j j m m j m⊗ = , (2.31) 

which are named Clebsch-Gordan coefficients, or Clebsch’s for short.  It is also common 
to drop much of the punctuation inside the matrix element when this does not cause 
confusion. 
 Computing these coefficients by hand is straightforward but tedious.   We first 
note that 

 ( )( ) ( )( )1 2

1 1 2 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2 ,j j
a a am m m mm m

T j j m m j j m m T j j m m T
′ ′′ ′

′ ′= +∑ ∑  (2.32a) 

 ( )( ) ( )( )*†† j j
a a am m mmm m

T jm jm T jm T
′ ′′ ′

= =∑ ∑  (2.32b) 

These relations are true not only for the three Ta’s for a = 1, 2, and 3, but also for T± .  
Taking the Hermitian conjugate of the latter expression, we find 

 ( )( )j
a a mmm

jm T jm T
′′

′= ∑  (2.33) 

We can use these together to find two expressions for 1 2 1 2ajm T j j m m , namely 

 ( )( ) ( )( ) ( )( )1 2

1 1 2 2
1 2

1 2 1 2 1 2 1 2 1 2 1 2
j j j

a a amm m m m mm m m
T jm j j m m jm j j m m T jm j j m m T

′ ′ ′′ ′ ′

′ ′ ′= +∑ ∑ ∑  

  (2.34) 

These relationships turn out to be sufficient to find proportionality constants between all 
non-vanishing matrix elements 1 2 1 2jm j j m m  for fixed j,  j1, and j2.  For further details, 
consult my quantum mechanics notes, posted here.  For each value of j, they are therefore 
determined up to a normalization constant and a phase.  The normalization constant can 
be worked out from the demand that 1jj jj = .  The phase is arbitrary, but it is not hard 
to see from (2.34) that the Clebsch’s can be chosen all real, in which case there is still a 
sign ambiguity that remains, which must be simply chosen arbitrarily. 
 From the construction, Clebsch’s are meaningful only if j is in the range given by 
(2.29), and furthermore since the T3 eigenvalues of the tensor product representation are 

                                                 
5 Unfortunately, the notation for Clebsch-Gordan coefficients is far from universal.  They are also 
sometimes labeled as 1 1 2 2, ; , ,j m j m j m  or 1 2 1 2 1 2, ; , , ; ,j j m m j j j m .  Also, there are sign 
conventions.  If you actually need to use Clebsch’s and are looking them up their values or properties from 
sources, you should make sure your sources are consistent. 
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just the sums of the eigenvalues of the separate T3 eigenvalues, we must have 
1 2m m m= + .  Therefore, 

 1 2 1 2 1 2 1 2 1 2; 0 only if andj j m m jm m m m j j j j j≠ = + − ≤ ≤ +  (2.35) 

They also satisfy some other simple identities: 

 ( ) 1 2

2 1 2 1 1 2 1 2; 1 ;j j jj j m m jm j j m m jm+ −= −  (2.36a) 

 ( ) 1 2

1 2 1 2 1 2 1 2; , , 1 ;j j jj j m m j m j j m m jm+ −− − − = −  (2.36b) 

 1 20; 0 0 ;0 1j m jm j m jm= =  (2.36c) 

 Fortunately, because of their importance, Clebsch-Gordan coefficients can be 
looked up in tables; however, to save space, tables normally only include 1 2 0j j≥ >  and 

0m ≥ ; other values can then be obtained using eqs. (2.36).  There is also a 
straightforward formula for them. 

 

( )( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( )

1 2

1 2 1 2 1 2
1 2 1 2 ,

1 2

1 1 2 2

1 2 1 1 2 2 2 1 1 2

2 1 ! ! !
, ; , ,

1 !

1 ! ! ! ! ! !
! ! ! ! ! !

m m m

k

k

j j j j j j j j j j
j j m m j m

j j j

j m j m j m j m j m j m
k j j j k j m k j m k j j m k j j m k

δ +

+ + − − + + −
= ×

+ + +

− + − − + − +
×

+ − − − − + − − + + − − +∑
 

  (2.37) 

The sum is taken over all integers k such that all the factorials in the denominator are 
non-negative.  Fortunately, it is rarely necessary to use equation (2.37).  I have written a 
Maple subroutine, available from the web page here, which can compute these for you.  
 
 
E.  Atoms 
 
 We’d now like to apply our understanding of group theory to the subject of 
atomic physics.  An atom consists of a nucleus surrounded by one or more electrons.  A 
typical Hamiltonion would look something like   

 
2 2 2

0 0, where
2

i e e

i i i ji i j

Zk e k eH H H H
m <

′= + = − +
−∑ ∑ ∑P

r r r
 (2.38) 

where H’contains various effects that are typically quite small, such as external fields, 
spin-orbit coupling, etc.  Actually solving (2.38) is quite difficult.  All we want to notice 
is that all the terms included are invariant under rotations of coordinates.  Hence if 

( )iψ r  is an eigenstate of H, so also will be ( ) ( )T
R i iP Rψ ψ=r r , where R is any 

element of ( )3O  and RP  is the rotation operator.  In general, eigenstates will be 
accompanied by partners with the same energy, and when we perform a rotation, the 
wave functions will mix with corresponding partners according to  
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 ( ) ( ) ( ) ( )a a a
R m m m m

m
P Rψ ψ ′ ′

′

= Γ∑  (2.39) 

where (a) denotes the irreps of the group ( ) ( )3 3O SO= ×J ,  Hence all atomic states can 

be labeled ( ),l
mψ ± , where l denotes the rotations under SO(3) and ±  the inversion 

properties.  Because our rotations are only of coordinates, l will be restricted to be an 
integer.  These wave functions will have an automatic 2 1l +  degeneracy. 
 However, electrons are not described exclusively by their spatial wave functions; 
they also have spin, an intrinsic property of the electron.  A single electron is described 
by a wave function ( )αψ r , such that, under a rotation, the wave function changes to 

 ( ) ( ) ( ) ( )
1
2T

RP R Rα β βα
β

ψ ψ= Γ∑r r  (2.40) 

Hence when performing rotations, we must rotate both the coordinate and the spin index.  
Multiple electrons will be described by products of these individual wave functions, and 
hence will have multiple spin indices.  The total spin s will then be described by tensor 
product representations, of the form ( ) ( ) ( )1 1 1

2 2 2⊗ ⊗ ⊗" , which, depending on the 
number of electrons, can be as large as half the number of electrons.6 
 Note that the unperturbed Hamiltonian does not contain spin at all.  It follows that 
we can perform separately rotations on the electronic wave functions and the spin 
indices; both commute with the Hamiltonian.  Hence the symmetry of H0 is 

 ( ) ( ) ( ) ( )3 2 3 2O SU SO SU× = × ×J  (2.41) 

States of this operator can be labeled ( ), ,
,

l s
m mψ ±

′ , and will have degeneracy ( )( )2 1 2 1l s+ + . 

 Of course, there may be various other interactions, as signified in H’.  In 
particular, there will be spin-orbit coupling, a relativistic correction that causes an 
interaction between the angular dependence of the wave function and the spin.  
Nonetheless, since physics is invariant under rotations, we expect the full Hamiltonian to 
remain invariant if we rotate both the coordinates.  This means the full symmetry (2.41) 
will break down to the smaller group ( )2SU×J .  The representations ( ), ,l s ±  will be 

combined via the rules (2.29) into representations ( ),j ±  with only 2 1j +  degeneracy, 

with j running from l s+  down to l s− . 

                                                 
6 In fact, the spin can be shown to cancel out in all but the outermost “valence” electrons, so low spin states 
are more common than high spin states.  However, the total spin will always be a half-integer if the number 
of electrons is odd, and an integer if it is even.  One issue that might puzzle you is why the spins “interact” 
at all; that is, why can’t we just rotate every spin separately, making the symmetry group much bigger, with 
one factor of SU(2) for each electron.  Basically, because electrons are fermions, we must keep the wave 
function anti-symmetric.  Rotating the spin indices of one electron while leaving the rest unchanged 
destroys this anti-symmetry, so we need to rotate them simultaneously. 
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 Other external perturbations may 
cause further splittings of these states.  
In the presence of a magnetic field, say 
in the z-direction, our perturbation H’ 
will no longer be rotationally invariant, 
except around the z-axis.  As a 
consequence, the 2j+ 1 states will be 
further split, leaving no degeneracy at 
all.  In some cases, the splitting due to 
strong magnetic fields may be more 
important than the spin-orbit coupling, 
but this will not normally be the case.  A 
typical situation is illustrated in Fig. 2-3 
for the sodium D-line. 
 If you place the atom in a crystal, there will generally be a nearly complete 
breakdown of spherical symmetry, reducing the group ( )3O  to some finite subgroup.  At 
this point, we must return to using characters.  We need to work out the characters for a 
finite rotation of an arbitrary element of ( )3SO .  It is not hard to show that all rotations 
by the same angle are in the same conjugacy class, and hence must have the same 
character.  It is easiest to work out the character for rotations around the z-axis, for which 
we find 

 ( ) ( ) ( )( ) ( )( )1
3tr exp tr diag , , , ,

j
j j i j xijx ijx imx

m j

R ixT e e e eχ − −

=−

⎡ ⎤ ⎡ ⎤= = =⎡ ⎤⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ∑x …  

 ( ) ( ) ( )
( )

1
2

1
2

sin 1
,

sin
j j x

R
x

χ
+⎡ ⎤⎣ ⎦=⎡ ⎤⎣ ⎦x  (2.42) 

A formula Dr. Holzwarth already derived.  This formula can then be used to efficiently 
work out how the representation ( )jΓ  breaks down under some smaller subgroup. 
 
 
F. Spherical Tensor Operators 
 
 Consider the action of a rotation on a quantum state.  In a manner very similar to 
how we defined the matrices Ta for a representation, let us define the operators aT  as 

 ( ) 0a R
a

i P
x =

∂
≡

∂ x x
T  (2.43) 

In a straightforward manner, we then can show that 

 ( ) ( )exp a aR a
P i x= − ∑x T  (2.44) 

Under a rotation, a set of wave functions ( )j
mψ  changes to  

l = 1
s = 1/2 j = 1/2 

j = 3/2 

 
Figure 2-3:  Illustration of energy 
splittings in the Sodium D-line.  If you 
ignore spin orbit coupling, there are 6 
degenerate quantum states, all in the l = 1 
and s = ½ representation.  Spin orbit 
coupling reduces the symmetry, breaking 
these six states into the two cases j = 3/2 
and j = 1/2.  In the presence of a magnetic 
field, the states are split completely. 
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( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )( )
,

exp exp

j j j
m m m mR

m

j j j
a a m m a aa a m mm

P R

i x i x T

ψ ψ

ψ ψ

′ ′
′

′
′′

= Γ

− = −

∑

∑ ∑ ∑

x x

T
 (2.45) 

It therefore follows that 

 ( ) ( ) ( )( )j j j
a m m a m mm

Tψ ψ ′
′′

= ∑T  (2.46) 

 It will prove useful to discuss how operators change when we perform a rotation 
on them.  Suppose we have a state vector ψ  which is acted on by an operator O, so we 

have O ψ .  When we perform a rotation R, we want this state to change to 

 ( ) ( )( )†
R R R RP O P OP Pψ ψ=  (2.47) 

it follows that under rotation, an operator changes to 

 ( ) ( )† exp expR R a a a aa a
P OP i x O i x= − ∑ ∑T T  (2.48) 

 Now, suppose we have a set of operators that get mixed into each other when we 
perform a rotation. For example, suppose we have a set of three vector operators 

( )1 2 3, ,V V V=V  that rotate when you perform rotations, so that 

 † †, . .T
R R R b R c cb

c
P P R i e P V P V R= =∑V V , (2.49) 

Some examples are the position, momentum, orbital angular momentum, spin, and total 
angular momentum operators of quantum mechanics. 
 Now, write out (2.49) for small rotations, using (2.48) together with 
( ) ( )expR i= − ⋅x x T  with the explicit matrices T given by (2.5), which as discussed there 

is the same as ( )a abcbc
T iε= − .  We therefore have 

 

( ) ( ) ( )
( )

[ ]

1 1 1 ,

,

, ,

T

a a a a a aa a a

T
a a a a aa a

T
a a

i x i x i x T

i x i x T

T

− + = −

− − = −

=

∑ ∑ ∑
∑ ∑

V V

V V V V V

V V

T T

T T

T

 

 [ ] ( ) ( ), T
a b a c a acb c abc ccbb

c c c
V T V T i V i Vε ε= = = − =∑ ∑ ∑VT  (2.50) 

Now, let’s define three new operators ( )1
mV  for m = +1, 0, -1: 

 ( ) ( ) ( )1 1 1
0 3 1 1 22

,V V V V iV±= = −∓  (2.51) 

Then it can be shown by simple computation that 

 ( ) ( ) ( )( )1 1 1,a m m a m mm
V V T′

′′

⎡ ⎤ =⎣ ⎦ ∑T  (2.52) 
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As we will demonstrate shortly, we can use this fact to help us compute matrix elements 
of the type ( )1

qn j m V njm′ ′ ′ . 
 We want to generalize this concept.  Let us define spherical tensor operators 

( )k
mO , where m runs from k to – k to be a set of operators that have the following 

commutation relations with our rotation generators aT : 

 ( ) ( ) ( )( ), k k k
a m m a m mm

O O T′
′′

⎡ ⎤ =⎣ ⎦ ∑T  (2.53) 

The number k is called the rank of the spherical tensor.  A scalar operator, for example, is 
an operator that commutes with aT , and corresponds to k = 0, and the vector operators 

( )1
qV  are simply k = 1.  We can build up higher tensors out of simpler ones, such as 

vectors.  For example, if V and W are vector operators, it isn’t hard to show that by 
multiplying them in all nine possible combinations, we can produce tensor operators of 
rank k = 0, 1, or 2.  The rank 0 (scalar) is just produced by the dot product, ⋅V W , the 
rank 0 (vector) is just the cross-product, and the rank 2 part works out to correspond to 
the traceless symmetric tensor product.  For more details, see my quantum notes here. 
 We have discussed how operators transform under rotation, but it is also helpful 
to discuss how they behave under parity.  For the rotation R = J, inversion, we can 
classify operators based on how they behave, as one of two cases †

J JP OP O= ± .  It isn’t 
hard to show that PJ commutes with aT , and therefore all of the components of a 

spherical tensor ( )k
mO  will have the same type of parity, so we can classify them as ( ),k

mO ± .  
Hence operators can be subcategorized based on parity.  For example, position and 
momentum are each ( )1

mO −  operators, while orbital angular momentum, spin, and total 

angular momentum are each ( )1
mO +  operators. 

 
 
G. The Wigner-Eckart Theorem 
 
 Our goal is to find all matrix elements of the form 

 ( )k
qn j m O njm′ ′ ′ , (2.54) 

Consider the combination ( )k
qO njm .  Let one of our three operators aT  act on it.  The 

result is 

 
( ) ( ) ( )

( ) ( )( ) ( ) ( )( )
,k k k

a q a q q a

k k k j
q a q aq mq q m m

O njm O njm O njm

O T njm O njm T′′ ′′′ ′′

⎡ ⎤= +⎣ ⎦

′′= +∑ ∑

T T T
 (2.55) 

Also, consider 

 ( )( ) ( )( )*†† j j
a a am m m mm m

n j m n j m T n j m T′ ′

′′ ′ ′ ′′′′ ′′

′ ′ ′ ′ ′ ′′ ′ ′ ′′= =∑ ∑T  (2.56) 
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Taking the Hermitian conjugate of (2.56) and combining it with (2.55) then gives two 
ways to write the expression ( )k

a qn j m O njm′ ′ ′ T : 

 ( )( ) ( )

( ) ( )( )
( ) ( )( )

k k
q a q qqj k

a qm m k jm
q a m mm

n j m O njm T
T n j m O njm

n j m O njm T

′
′′′

′′ ′′′
′′′′

⎧ ⎫′ ′ ′
⎪ ⎪

′ ′ ′′ = ⎨ ⎬
′ ′ ′ ′′⎪ ⎪+

⎩ ⎭

∑
∑

∑
 (2.57) 

 Stop a moment, and compare (2.57) with (2.34).  They are virtually the same 
equation!  In the discussion after (2.34), I argued that (2.34) completely determined the 
Clebsch-Gordan coefficients, save for a normalization and phase that would depend on j.  
It follows that these matrix elements will be proportional to the Clebsch-Gordan 
coefficients: 

 ( ) ;k
qn j m O njm j m kj qm′ ′ ′ ′ ′∝ . (2.58) 

The proportionality constant can depend on n, j, n’, j’, and the operator, but they cannot 
depend on q, m, or m’.  For reasons that are for the moment obscure, we also add a factor 
of 1 2 1j′ +  to the right side of (2.57).  The remaining proportionality constant is then 

given the name n j O nj′ ′ , and we have 

 ( ) 1 ;
2 1

k
qn j m O njm n j O nj kj qm j m

j
′ ′ ′ ′ ′ ′ ′=

′ +
, (2.59) 

the Wigner-Eckart theorem.  The Clebsch-Gordan coefficient seems to have had the bra 
and ket mysteriously interchanged; this is acceptable since these matrix elements are 
always chosen real.  The nasty “reduced” matrix element n j O nj′ ′  is not something 
you compute directly; instead, you measure or compute one matrix element on the left 
side of (2.59), then use the Wigner-Eckart theorem to immediately deduce the value of all 
the remaining matrix elements.  For fixed n’, j’, n, and j, there is only one n j O nj′ ′ , 

but there are ( )( )( )2 1 2 1 2 1j j k′+ + +  matrix elements on the left side, all related to each 
other.  They can be non-vanishing only if the Clebsch-Gordan coefficients are non-
vanishing, so we must have m q m′+ =  and j k j j k′− ≤ ≤ + , for example. 

 It is not hard to show using (2.37) that if ( )
0

kO  is a Hermitian operator, then 

 
*

n j O nj nj O n j′ ′ ′ ′=  (2.60) 

Hence these reduced matrix elements act a lot like ordinary matrix elements. This was the 
reason for including the factor of 1 2 1j′ + . 
 Let’s use the Wigner-Eckart theorem to learn what we can about spontaneous 
emission from atoms.  To leading order, these emissions tend to be dominated by the 
electric dipole approximation, such that the amplitude for decay of an atom from a state 
njm  to a state n j m′ ′ ′  is dominated by a term proportional to n j m njm′ ′ ′ r , where r is 

the position operator.  Like any other vector, r is a rank one spherical tensor, and 
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therefore this matrix element will vanish unless 1 1j j j′− ≤ ≤ + .  To second order, the 
emission is governed primarily by either the electric quadrupole emission (a rank two 
spherical tensor) or by magnetic dipole emission (another vector). 
 In addition to rotational symmetry, parity can also be useful in determining which 
transitions take place.  For example, because the position operator r is a true vector, the 
initial and final states must have opposite parity. 


