Solution Set 23

1. [20] The group SU(2) shows up in surprising places. Consider, for example, the two-dimensional harmonic oscillators, which can be written in the form

$$H = \hbar\omega \left(a_1^{\dagger} a_1 + a_2^{\dagger} a_2 + 1 \right)$$

where a_1 and a_2 are two operators satisfying

$$\begin{bmatrix} a_i, a_j^{\dagger} \end{bmatrix} = \delta_{ij}, \quad \begin{bmatrix} a_i, a_j \end{bmatrix} = \begin{bmatrix} a_i^{\dagger}, a_j^{\dagger} \end{bmatrix} = 0$$

By conventional means, it is not hard to show that this Hamiltonian results in degenerate eigenvalues. But why? Is there a symmetry which results in this degeneracy?

(a) [8] Define the three operators

$$\mathcal{T}_1 = \frac{1}{2} \left(a_1^{\dagger} a_2 + a_2^{\dagger} a_1 \right), \quad \mathcal{T}_2 = \frac{i}{2} \left(a_2^{\dagger} a_1 - a_1^{\dagger} a_2 \right), \quad \mathcal{T}_3 = \frac{1}{2} \left(a_1^{\dagger} a_1 - a_2^{\dagger} a_2 \right).$$

Show that these operators satisfy the SU(2) commutation relations,

$$[\mathcal{T}_a, \mathcal{T}_b] = i \sum_c \varepsilon_{abc} \mathcal{T}_c .$$

This is three relations in all.

We simply start working them out:

$$\begin{split} \left[\mathcal{T}_{1},\mathcal{T}_{2}\right] &= \frac{i}{4} \left[a_{1}^{\dagger} a_{2} + a_{2}^{\dagger} a_{1}, a_{2}^{\dagger} a_{1} - a_{1}^{\dagger} a_{2} \right] = \frac{i}{4} \left\{ \left[a_{1}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1} \right] - \left[a_{2}^{\dagger} a_{1}, a_{1}^{\dagger} a_{2} \right] \right\} = \frac{i}{2} \left[a_{1}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1} \right] \\ &= \frac{i}{2} \left\{ a_{1}^{\dagger} \left[a_{2}, a_{2}^{\dagger} a_{1} \right] + \left[a_{1}^{\dagger}, a_{2}^{\dagger} a_{1} \right] a_{2} \right\} = \frac{i}{4} \left\{ a_{1}^{\dagger} \left[a_{2}, a_{2}^{\dagger} \right] a_{1} + a_{2}^{\dagger} \left[a_{1}^{\dagger}, a_{1} \right] a_{2} \right\} \\ &= \frac{i}{2} \left\{ a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2} \right\} = i \mathcal{T}_{3}, \\ \left[\mathcal{T}_{2}, \mathcal{T}_{3} \right] &= \frac{i}{4} \left[a_{2}^{\dagger} a_{1} - a_{1}^{\dagger} a_{2}, a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2} \right] \\ &= \frac{i}{4} \left\{ \left[a_{2}^{\dagger} a_{1}, a_{1}^{\dagger} a_{1} \right] - \left[a_{2}^{\dagger} a_{1}, a_{2}^{\dagger} a_{2} \right] - \left[a_{1}^{\dagger} a_{2}, a_{1}^{\dagger} a_{1} \right] + \left[a_{1}^{\dagger} a_{2}, a_{2}^{\dagger} a_{2} \right] \right\} \\ &= \frac{i}{4} \left\{ a_{2}^{\dagger} \left[a_{1}, a_{1}^{\dagger} \right] a_{1} - a_{2}^{\dagger} \left[a_{2}^{\dagger}, a_{2} \right] a_{1} - a_{1}^{\dagger} \left[a_{1}^{\dagger}, a_{1} \right] a_{2} + a_{1}^{\dagger} \left[a_{2}, a_{2}^{\dagger} \right] a_{2} \right\} \\ &= \frac{i}{4} \left\{ a_{2}^{\dagger} a_{1} + a_{2}^{\dagger} a_{1} + a_{1}^{\dagger} a_{2} + a_{1}^{\dagger} a_{2} \right\} = i \mathcal{T}_{1}, \\ \left[\mathcal{T}_{3}, \mathcal{T}_{1} \right] &= \frac{1}{4} \left[a_{1}^{\dagger} a_{1} - a_{2}^{\dagger} a_{2}, a_{1}^{\dagger} a_{2} + a_{2}^{\dagger} a_{1} \right] \\ &= \frac{1}{4} \left\{ \left[a_{1}^{\dagger} a_{1}, a_{1}^{\dagger} a_{2} \right] + \left[a_{1}^{\dagger} a_{1}, a_{2}^{\dagger} a_{1} \right] - \left[a_{2}^{\dagger} a_{2}, a_{1}^{\dagger} a_{2} \right] - \left[a_{2}^{\dagger} a_{2}, a_{2}^{\dagger} a_{1} \right] \right\} \\ &= \frac{1}{4} \left\{ a_{1}^{\dagger} \left[a_{1}, a_{1}^{\dagger} \right] a_{2} + a_{2}^{\dagger} \left[a_{1}^{\dagger}, a_{1} \right] a_{1} - a_{1}^{\dagger} \left[a_{2}^{\dagger}, a_{2}^{\dagger} \right] a_{2} - a_{2}^{\dagger} \left[a_{2}, a_{2}^{\dagger} \right] a_{1} \right\} \\ &= \frac{1}{4} \left\{ a_{1}^{\dagger} \left[a_{1}, a_{1}^{\dagger} \right] a_{2} + a_{2}^{\dagger} \left[a_{1}^{\dagger}, a_{1} \right] a_{1} - a_{1}^{\dagger} \left[a_{2}^{\dagger}, a_{2}^{\dagger} \right] a_{2} - a_{2}^{\dagger} \left[a_{2}, a_{2}^{\dagger} \right] a_{1} \right\} \\ &= \frac{1}{4} \left\{ a_{1}^{\dagger} \left[a_{1}, a_{1}^{\dagger} \right] a_{2} + a_{2}^{\dagger} \left[a_{1}^{\dagger}, a_{1} \right] a_{1} - a_{1}^{\dagger} \left[a_{2}^{\dagger}, a_{2}^{\dagger} \right] a_{2} - a_{2}^{\dagger} \left[a_{2}, a_{2}^{\dagger} \right] a_{1} \right\} \\ &= \frac{1}{4} \left\{ a_{1}^{\dagger} \left[a_{1}, a_{1}^{\dagger} \right] a_{2} + a_{2}^{\dagger} \left[a_{1}^{\dagger}, a_{1}^{\dagger} \right] a_{2}$$

It was tedious, but straightforward.

(b) [8] Show that all three of the operators commute with the Hamiltonian.

Obviously, the 1 term commutes. We therefore need only consider the other two.

$$\begin{split} \left[\mathcal{T}_{1},H\right] &= \tfrac{1}{2}\hbar\omega \Big[a_{1}^{\dagger}a_{2} + a_{2}^{\dagger}a_{1}, a_{1}^{\dagger}a_{1} + a_{2}^{\dagger}a_{2}\Big] \\ &= \tfrac{1}{2}\hbar\omega \Big\{ \Big[a_{1}^{\dagger}a_{2}, a_{1}^{\dagger}a_{1}\Big] + \Big[a_{1}^{\dagger}a_{2}, a_{2}^{\dagger}a_{2}\Big] + \Big[a_{2}^{\dagger}a_{1}, a_{1}^{\dagger}a_{1}\Big] + \Big[a_{2}^{\dagger}a_{1}, a_{2}^{\dagger}a_{2}\Big] \Big\} \\ &= \tfrac{1}{2}\hbar\omega \Big\{ a_{1}^{\dagger} \Big[a_{1}^{\dagger}, a_{1}\Big] a_{2} + a_{1}^{\dagger} \Big[a_{2}, a_{2}^{\dagger}\Big] a_{2} + a_{2}^{\dagger} \Big[a_{1}, a_{1}^{\dagger}\Big] a_{1} + a_{2}^{\dagger} \Big[a_{2}^{\dagger}, a_{2}\Big] a_{1} \Big\} \\ &= \tfrac{1}{2}\hbar\omega \Big\{ -a_{1}^{\dagger}a_{2} + a_{1}^{\dagger}a_{2} + a_{2}^{\dagger}a_{1} - a_{2}^{\dagger}a_{1} \Big\} = 0, \\ \Big[\mathcal{T}_{2}, H\Big] &= \tfrac{i}{2}\hbar\omega \Big[a_{2}^{\dagger}a_{1} - a_{1}^{\dagger}a_{2}, a_{1}^{\dagger}a_{1} + a_{2}^{\dagger}a_{2}\Big] \\ &= \tfrac{i}{2}\hbar\omega \Big\{ \Big[a_{2}^{\dagger}a_{1}, a_{1}^{\dagger}a_{1}\Big] + \Big[a_{2}^{\dagger}a_{1}, a_{2}^{\dagger}a_{2}\Big] - \Big[a_{1}^{\dagger}a_{2}, a_{1}^{\dagger}a_{1}\Big] - \Big[a_{1}^{\dagger}a_{2}, a_{2}^{\dagger}a_{2}\Big] \Big\} \\ &= \tfrac{i}{2}\hbar\omega \Big\{ a_{2}^{\dagger} \Big[a_{1}, a_{1}^{\dagger}\Big] a_{1} + a_{2}^{\dagger} \Big[a_{2}^{\dagger}, a_{2}\Big] a_{1} - a_{1}^{\dagger} \Big[a_{1}^{\dagger}, a_{1}\Big] a_{2} - a_{1}^{\dagger} \Big[a_{2}, a_{2}^{\dagger}\Big] a_{2} \Big\} \\ &= \tfrac{i}{2}\hbar\omega \Big\{ a_{2}^{\dagger}a_{1} - a_{2}^{\dagger}a_{1} + a_{1}^{\dagger}a_{2} - a_{1}^{\dagger}a_{2} \Big\} = 0, \\ \Big[\mathcal{T}_{3}, H\Big] &= \tfrac{1}{2}\hbar\omega \Big[a_{1}^{\dagger}a_{1} - a_{2}^{\dagger}a_{2}, a_{1}^{\dagger}a_{1} + a_{2}^{\dagger}a_{2}\Big] = \tfrac{1}{2}\hbar\omega \Big\{ \Big[a_{1}^{\dagger}a_{1}, a_{2}^{\dagger}a_{2}\Big] - \Big[a_{2}^{\dagger}a_{2}, a_{1}^{\dagger}a_{1}\Big] \Big\} = 0. \end{split}$$

It immediately follows that we can choose, for example, eigenstates of H that are also eigenstates of \mathcal{T}_3 and \mathcal{T}^2 , which we would write as $|j,m\rangle$, with m running from -j to +j. At the moment, however, we have no idea what the energy of these states will be, though we do know they will be 2j + 1 degenerate.

(c) [4] There is a simple relationship between the Hamiltonian and the generators, namely

$$\mathcal{T}^2 = \mathcal{T}_1^2 + \mathcal{T}_2^2 + \mathcal{T}_3^2 = \frac{1}{4} \left[H^2 / \hbar^2 \omega^2 - 1 \right]$$

Demonstrating this is straightforward but laborious. Using this relationship, find the possible eigenvalues of H, and their degeneracy, using only your knowledge of the eigenvalues of \mathcal{T}^2 .

The eigenstates will have energies E. If we put the eigenstate $|j,m\rangle$ on the right, we know the eigenvalue of \mathcal{T}^2 will be $j^2 + j$. We therefore have

$$\mathcal{T}^{2} | j, m \rangle = \frac{1}{4} \Big[H^{2} / \hbar^{2} \omega^{2} - 1 \Big] | j, m \rangle,$$

$$(j^{2} + j) | j, m \rangle = \frac{1}{4} \Big[E^{2} / \hbar^{2} \omega^{2} - 1 \Big] | j, m \rangle,$$

$$4 j^{2} + 4 j = E^{2} / \hbar^{2} \omega^{2} - 1,$$

$$E^{2} / \hbar^{2} \omega^{2} = 4 j^{2} + 4 j + 1 = (2 j + 1)^{2},$$

$$E = (2 j + 1) \hbar \omega$$

So the energies will be positive integers times $\hbar\omega$. The degeneracy is 2j + 1.