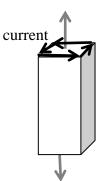
Physics 712 Chapter 6 Solutions

- 4. [5] Consider a cylinder of arbitrary cross-sectional shape, such as a square, circle, or other similar shape. This cylinder will be infinitely long in the z-direction. It will have a surface current K, with units A/m, running around it in a counter-clockwise direction as viewed from above.
 - (a) In which direction(s) can you translate this cylinder and leave it unchanged? What can you conclude about the resulting magnetic field?



The cylinder can be translated along the z-axis without changing the problem. Therefore, all components of the magnetic field must be independent of z, and if we are working in Cartesian coordinates, we could write

$$\mathbf{B}(\mathbf{r}) = B_x(x, y)\hat{\mathbf{x}} + B_y(x, y)\hat{\mathbf{y}} + B_z(x, y)\hat{\mathbf{z}}$$

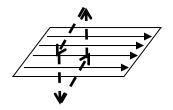
(b) Across which plane can you reflect this current and leave it unchanged? Based on this, which components of the magnetic field must vanish?

You can reflect it across the xy-plane, which reverses z and leaves x and y unchanged. Keeping in mind that **B** is a pseudovector, we would have, under these circumstances,

$$\mathbf{B}(\mathbf{r}) \to -B_x(x, y)\hat{\mathbf{x}} - B_y(x, y)\hat{\mathbf{y}} + B_z(x, y)\hat{\mathbf{z}}$$

Since the magnetic field must be unchanged, we conclude $B_x = B_y = 0$, so there is only magnetic field in the z-direction.

- 5. [10] Consider an infinite plane of surface current in the plane z = 0 flowing in the direction $K = K\hat{x}$, where K has units of A/m.
- (a) Which direction(s) can you translate this current and leave it unchanged? What conclusions can you draw about the B-field?



The current can be translated in the *x* or *y*-direction and leave the problem unchanged, so we conclude that **B** can only be a function of *z*, so $\mathbf{B} = B_x(z)\hat{\mathbf{x}} + B_y(z)\hat{\mathbf{y}} + B_z(z)\hat{\mathbf{z}}$.

(b) By reflecting this problem across the y = 0 plane, which of the components of B can you conclude must vanish?

When you reflect across the y=0 plane, you reverse y and leave x and z unchanged. But since **B** is a pseudovector, this would change **B** to $\mathbf{B} \to \mathbf{B} = -B_x(z)\hat{\mathbf{x}} + B_y(z)\hat{\mathbf{y}} - B_z(z)\hat{\mathbf{z}}$. Since the magnetic field is unchanged, the x and z components must vanish, so $\mathbf{B} = B_y(z)\hat{\mathbf{y}}$.

(c) By reflecting this problem across the z=0 plane, show that you can relate the field above the plane to the field below the plane.

When you reflect across z = 0, z changes sign, and since **B** is psudovector, so does B_y and B_x (but not B_z). This tells us $\mathbf{B} \to \mathbf{B} = -B_y(-z)\hat{\mathbf{y}}$, which tells us $B_y(-z) = -B_y(z)$.

(d) Using an appropriate Ampere loop, find B everywhere.

Consider the loop sketched above, which is at height h above and below the plane on the top and bottom, and has length L in the y-direction. The current flowing through this loop will be KL, so by Ampere's law for loops, we have

$$\mu_0 KL = \oint \mathbf{B} \cdot d\mathbf{l} = -B_y(h)L + 0 + B_y(-h)L + 0 = -2LB(h).$$

Solving for B(h), we find for h > 0 that $B_y(h) = -\frac{1}{2}\mu_0 K$, from which we conclude

$$\mathbf{B} = -\frac{1}{2} \mu_0 K \operatorname{sgn}(z) \hat{\mathbf{y}} ,$$

Where sgn(z) = +1 if z > 0 and sgn(z) = -1 if z < 0.