
Physics 712 
Chapter 5 Problems 

 
2. [10] A wire loop centered on the origin in the xy-plane has perimeter C and carries a 

current I traveling counter-clockwise as viewed from above.  Find the magnetic flux 
density at the origin if the loop is a (a) equilateral triangle, (b) square, (c) regular 
hexagon, (d) circle. 

 
 In every case except the last one, the sides of the regular polygon will 
be straight segments with length L C N .  It is also not hard to figure out 
the distance of the segments to the origin.  As you can see for the illustration 
at right, using the case N = 4 for illustrative purposes, the central angle from 
the origin to the closest point on the wire segment will be 2 N , and hence 

the central angle of half the side will be N .  It is then clear that the 
distance d to the origin is given by 
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 The magnetic flux density from a line segment is given by  
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where 1  and 2  are the base angles of the triangle formed by the line segment with lines going 

to the center.  By the right-hand rule, this magnetic field will point in the +z direction.  By 
geometry, we can see that 1 1

1 2 2 N      , so that  
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We therefore have the magnetic field from one side of the polygon: 
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If we multiply this by the number of segments N, we get the magnetic field from the whole thing: 
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We can then get each of our regular polygons simply by substituting the corresponding value of 
N.  Indeed, we can even get a circle by considering the limit N  , in which case we use the 
approximation sin tan     for small  . 
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3. [10] Consider a cylinder of arbitrary cross-sectional shape, such as a 
square, circle, or other similar shape.  This cylinder will be infinitely 
long.  It will have a surface current K, with units A/m, running around 
it in a counter-clockwise direction as viewed from above.  Because it is 
infinitely long, you can use symmetry arguments to show that the 
magnetic flux density will always be parallel to the axis everywhere 
inside and outside the cylinder. 
(a) [6] By considering the Ampere loop wholly inside the cylinder 

(middle dashed loop), argue that the magnetic field is in fact 
constant everywhere outside the cylinder.  Repeat for the loop 
outside the cylinder (left dashed loop).  If we assume the magnetic field at infinity is 
zero, what is the magnetic field everywhere outside this cylinder? 

 
 Let the vertical size of any of the three Ampere’s loops be L. By Ampere’s law, since the 

loop on the inside has no current running through it, 0d  B l .  Since the magnetic field points 

in the up direction (which I’ll call +z), the top and bottom lines on that loop will have 0d B l , 
and will not contribute.  On each of the two sides, the magnetic field cannot depend on z, and 
hence will be constant along either of the two sides of the loop.  Hence we have 
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where BR and BL  are the magnetic flux density on the left and right side of the loop.  Hence 

R LB B , and since this loop can be found anywhere inside the cylinder, we have ˆin inBB z , a 

constant, everywhere inside. 
 The argument is identical using the outside loop, and we conclude that ˆout outBB z  

everywhere outside.  But since it vanishes at infinity (which is outside), we have 0out B . 

 
(b) [4] By considering the Ampere loop that is partly inside the cylinder and partly outside 

it (right dashed loop), find the magnetic flux density inside the cylinder. 
 
 We once again use Ampere’s Law, but if the vertical direction has length L, then we 
realize that a current KL is running through the loop, since it now passes into the cylinder.  If we 

use Ampere’s Law, we have 0 0d I KL    B l .  But when we do the loop integral, the right 

side does not contribute (because 0out B ), and the top and bottom don’t contribute (because the 

flux density is always in the z-direction), so we have 
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Putting all our information together, we have 

0 ˆ inside,

0 outside.
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