
Physics 712 
Solution to Problems 4.5 and 5.1 

 
5. [5] For problem 4.1, find the total energy if the cylinder has length L.  For problem 4.2, 

find the total energy.  In each case, show that the answer is equivalent to 1
2W Q  . 

 
 The energy is given for problem 4.1 by 
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where at the last step, we interpreted L Q   as the total charge.  For problem 4.2, we have 
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1. [10] We are trying to trap a charged particle of mass q > 0 and mass m by using a 
combination of magnetic and electric fields given by ˆBB z  and  ˆ ˆ ˆ2A x y z  E x y z . 

(a) [1] Obviously, 0   B B .  Check that it also satisfies 0   E E . 
 
 We simply see that 2 0A A A    E , and all the terms in E  vanish. 
 

(b) [6] Assume the particle has motion given by    cos , sinx R t y R t   .  Find an 

equation for  in terms of A and B. 
 
 The velocity and acceleration can be found by simply taking derivatives: 
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We therefore have 
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We then solve this using the quadratic equation, so 
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Until I solved this problem myself, I didn’t even realize there were two solutions to this equation. 
 

(c) [3] Argue that there is a maximum value of A for which circular motion is possible.  
Also argue that for A > 0, the particle will not “wander off” in the z-direction. 

 
 The solution only makes sense if the discriminant is positive, so we must have 

2 2 4q B mqA , or  2 4A qB m .  Although we have not discusses motion in the z-direction, it is 

pretty easy to see that the magnetic field has no influence on it, so the only vertical force is 
2z zF E q Azq   .  Such a linear restoring force will result in simple harmonic motion in the z-

direction, so it is stable against motion in the z-direction. 
 


