
Physics 712 
Chapter 4 Problems 

 
3. [15] An infinite line charge with charge per unit length  = 0 

parallel to the x-axis a distance h above a semi-infinite 
dielectric with dielectric constant .  Find the force per unit 
length on the line charge.  Find the bound surface charge 
density b on the surface of the dielectric. 

 
 We can think of a line of charge as if it were a series of point charges of length dx each of 
which has charge dx.  When calculating the resulting electric field above the plane, we have to 
add image charges below the plane.  It is clear that this will correspond to just a line of charges at 
z = –h of magnitude '.  Similarly, when calculating the electric field within the dielectric, it will 
look like it is coming from a line charge " located above the plane at z = h. The magnitude of 
these fictitious line charges will be 
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The electric field from a line charge in vacuum was calculated long ago.  It is given, for the line 
charge itself, by 

  2
0 0

ˆ
,

2 2

 
   

 
ρ ρ

E x  

where  is a vector pointing from the line to an arbitrary point.  It will be given by 
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We now add to this the contribution from the image charges, so that for z > 0, the electric field 
will be 
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Below the plane, the main change is we need to remember to divide by , since we are in the 
medium.  We therefore have 
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To find the force, we realize that the force is due to the electric field from the image line 
charge on the actual charge.  The force on a charge is qF E , so the force per unit length on the 

line charge would be L q L  F E E , so 
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 To find the bound surface charge density, we simply find ˆb  P z  at z = 0, to give 
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Interestingly, if you integrate this over y, you will get the linear charge density ', and this is not 
a coincidence. 
 
 
4. [15] A dielectric sphere with dielectric constant  of radius a lies at the origin in a 

background potential (in the absence of the sphere) of the form   xy x . 

(a) Write the background potential in terms of spherical harmonics times powers of r. 
 
 We first note that the background potential, in spherical coordinates, is 
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Comparing this to the spherical harmonics   2 2151
2, 2 4 2, sin iY e 

   
  , it is not hard to see that 

       2 2 2 2 2 2 21
2,2 2, 22

4 2
sin sin 2 sin , ,

4 4 15
i ixy r r e e r Y Y

i i
           

        

 
(b) Write a reasonable conjecture for the form of the potential in the regions r < a and r 

> a.  Your conjecture should automatically satisfy 2 0    within each of these 
regions.  It may contain unknown constants. 

 
 We recall that 2 0    for an arbitrary potential of the form 
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Our conjecture is now: 
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This automatically satisfies Laplace’s equation.  Furthermore, it has the correct asymptotic form 
at r =  and is well-behaved at r = 0. 
 
 



 
 

(c) By matching suitable boundary conditions, determine the value of any unknown 
constants. 

 
 Since we are working with the potential, it makes sense to match the potential at the 
boundary r = a.  We therefore have 
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Matching this equation will automatically insure that E|| is continuous as well. 
 It remains to make sure that D.  To make this match, we need 
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If we substitute our previous equation into this one, we find 
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We also find  
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Substituting these two expressions back in, and getting rid of the spherical harmonics, we have 
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