
Physics 712 
Chapter 3 Problems 

 
5. [15] A semi-infinite cylinder of radius a has potential  = 0 on the lateral surface, and  

= V on the surface at z = 0.  Write the potential as an infinite series.  Assuming the 
potential does not diverge as z  , which coefficients must vanish?  Find the potential 
everywhere, and numerically at  = 0 and z = a. 

 
 Since the potential vanishes at  = a, it can be written as a superposition of Bessel 
functions times eim, that is 

   
1

, , immn
mn m

m n

x
z A z J e

a
 

 

 

    
 

   

where xmn is the n’th root of Jm.  It must satisfy Laplace’s equation in the interior, which tells us 
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Since   im
m mnJ x a e   forms an independent set of functions on  and , the only way this can 

be achieved is if the coefficients all vanish, which implies 
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This equation has two linearly independent solutions, so 
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But we only want solutions that do not blow up at infinity, so we demand 0mn  , and then have 
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 It remains to find the coefficients mn .  Evaluating this expression at z = 0, we must have 
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We can use the orthonogonality of the functions   im
m mnJ x a e   to then find: 
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where in the last step we made the substitution 0nay x  .  You can get Maple to do the 

integrals numerically, or if you want to be cleverer, you can use the recursion relations 
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to rewrite the final integral as 
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We therefore find  0 0 1 02n n nV x J x     .  The first several terms can be 

found in the table at right.  The potential is 
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Substituting in z = a and using the fact that  0 0 1J  , we have 
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We let Maple do the sum for us.  The numerical value was found adding seven terms. 

> add(2/exp(x)/x/BesselJ(1,x),x=evalf(BesselJZeros(0,1..7))); 

n 
0n V  

1 1.601974697
2 -1.064799259
3 0.851399193
4 -0.729645240
5 0.648523614
6 -0.589542829
7 0.544180196
8 -0.507893631
9 0.478012498


