Physics 712 Chapter 3 Problems

5. [15] A semi-infinite cylinder of radius a has potential $\Phi = 0$ on the lateral surface, and $\Phi = V$ on the surface at z = 0. Write the potential as an infinite series. Assuming the potential does not diverge as $z \to \infty$, which coefficients must vanish? Find the potential everywhere, and numerically at $\rho = 0$ and z = a.

Since the potential vanishes at $\rho = a$, it can be written as a superposition of Bessel functions times $e^{im\phi}$, that is

$$\Phi(\rho,\phi,z) = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} A_{mn}(z) J_m \left(\frac{x_{mn}\rho}{a}\right) e^{im\phi}$$

where x_{mn} is the n'th root of J_m . It must satisfy Laplace's equation in the interior, which tells us

$$0 = \nabla^{2} \Phi = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \left[\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} + \frac{1}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right] A_{mn}(z) J_{m}\left(\frac{x_{mn}\rho}{a}\right) e^{im\phi}$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} e^{im\phi} \left[\frac{\partial^{2}}{\partial \rho^{2}} + \frac{1}{\rho} \frac{\partial}{\partial \rho} - \frac{m^{2}}{\rho^{2}} \frac{\partial^{2}}{\partial \phi^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right] A_{mn}(z) J_{m}\left(\frac{x_{mn}\rho}{a}\right)$$

$$= \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} J_{m}\left(\frac{x_{mn}\rho}{a}\right) e^{im\phi} \left[-\frac{x_{mn}^{2}}{a^{2}} + \frac{d^{2}}{dz^{2}} \right] A_{mn}(z)$$

Since $J_m(x_{mn}\rho/a)e^{im\phi}$ forms an independent set of functions on ρ and ϕ , the only way this can be achieved is if the coefficients all vanish, which implies

$$\left[-\frac{x_{mn}^2}{a^2} + \frac{d^2}{dz^2} \right] A_{mn}(z) = 0, \quad \text{or} \quad \frac{d^2}{dz^2} A_{mn}(z) = \frac{x_{mn}^2}{a^2} A_{mn}(z).$$

This equation has two linearly independent solutions, so

$$A_{mn}(z) = \alpha_{mn} \exp\left(\frac{x_{mn}z}{a}\right) + \beta_{mn} \exp\left(-\frac{x_{mn}z}{a}\right).$$

But we only want solutions that do not blow up at infinity, so we demand $\alpha_{\scriptscriptstyle mn}=0$, and then have

$$\Phi(\rho,\phi,z) = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} \beta_{mn} J_m \left(\frac{x_{mn} \rho}{a} \right) e^{im\phi} \exp\left(-\frac{x_{mn} z}{a} \right) e^{-x_{mn} z/a}.$$

It remains to find the coefficients β_{mn} . Evaluating this expression at z = 0, we must have

$$V = \sum_{m=-\infty}^{\infty} \sum_{n=1}^{\infty} eta_{mn} J_m \left(\frac{x_{mn}
ho}{a} \right) e^{im\phi}.$$

We can use the orthonogonality of the functions $J_m(x_{mn}\rho/a)e^{im\phi}$ to then find:

$$\begin{split} \beta_{mn} &= \frac{1}{2\pi} \cdot \frac{2}{a^2 J_{m+1}^2 \left(x_{mn} \right)} \int_0^{2\pi} e^{-im\phi} d\phi \int_0^a V J_m \left(\frac{x_{mn} \rho}{a} \right) \rho \, d\rho = \frac{2V \delta_{m0}}{a^2 J_1^2 \left(x_{0n} \right)} \int_0^a J_0 \left(\frac{x_{0n} \rho}{a} \right) \rho \, d\rho \\ &= \frac{2V \delta_{m0}}{x_{0n}^2 J_1^2 \left(x_{0n} \right)} \int_0^{x_{0n}} J_0 \left(y \right) y \, dy \, , \end{split}$$

where in the last step we made the substitution $\rho = ay/x_{0n}$. You can get Maple to do the integrals numerically, or if you want to be cleverer, you can use the recursion relations

$$J_{m\pm 1}(x) = \frac{m}{x} J_m(x) \mp \frac{d}{dx} J_m(x)$$

to rewrite the final integral as

$$\int_{0}^{x_{0n}} J_{0}(y) y \, dy = \int_{0}^{x_{0n}} \left[\frac{1}{y} J_{1}(y) + \frac{d}{dy} J_{1}(y) \right] y \, dy = \int_{0}^{x_{0n}} \frac{d}{dy} \left[y J_{1}(y) \right] dy = y J_{1}(y) \Big|_{0}^{x_{0n}} = x_{0n} J_{1}(x_{0n}).$$

We therefore find $\beta_{0n} = 2V/[x_{0n}J_1(x_{0n})]$. The first several terms can be found in the table at right. The potential is

$$\Phi(\rho, \phi, z) = \sum_{n=1}^{\infty} \frac{2V}{x_{0n} J_1(x_{0n})} J_0\left(\frac{x_{0n} \rho}{a}\right) \exp\left(-\frac{x_{0n} z}{a}\right).$$

Substituting in z = a and using the fact that $J_0(0) = 1$, we have

$$\Phi(0,\phi,a) = \sum_{n=1}^{\infty} \frac{2Ve^{-x_{0n}}}{x_{0n}J_1(x_{0n})} = 0.1405064065V.$$

n	eta_{0n}/V
1	1.601974697
2	-1.064799259
3	0.851399193
4	-0.729645240
5	0.648523614
6	-0.589542829
7	0.544180196
8	-0.507893631
9	0.478012498

We let Maple do the sum for us. The numerical value was found adding seven terms.

> add(2/exp(x)/x/BesselJ(1,x),x=evalf(BesselJZeros(0,1..7)));