Physics 712
Chapter 3 Problems

5. [15] A semi-infinite cylinder of radius a has potential ® = 0 on the lateral surface, and @
=V on the surface at z= 0. Write the potential as an infinite series. Assuming the
potential does not diverge as z — o, which coefficients must vanish? Find the potential
everywhere, and numerically at p=0and z = a.

Since the potential vanishes at p = a, it can be written as a superposition of Bessel
functions times e'™?, that is
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where xmn is the n’th root of Jm. It must satisfy Laplace’s equation in the interior, which tells us
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Since J,, (x,,po/a)e™ forms an independent set of functions on pand ¢, the only way this can
be achieved is if the coefficients all vanish, which implies
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This equation has two linearly independent solutions, so
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But we only want solutions that do not blow up at infinity, so we demand ¢,,, =0, and then have
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It remains to find the coefficients g, . Evaluating this expression at z = 0, we must have
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We can use the orthonogonality of the functions J  (x,,p/a)e™ to then find:
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where in the last step we made the substitution p =ay/x,, . You can get Maple to do the
integrals numerically, or if you want to be cleverer, you can use the recursion relations
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to rewrite the final integral as
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We therefore find f,, =2V /[ %,,J,(X,, ) |. The first several terms can be n B[V
found in the table at right. The potential is 1| 1.601974697
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Substituting in z = a and using the fact that J, (0) =1, we have 2 82;’8232223
I 7 | 0.544180196
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We let Maple do the sum for us. The numerical value was found adding seven terms.
> add(2/exp(x)/x/BesselJ(1,x) ,x=evalf(BesselJZeros(0,1..7)));




