
Physics 712 
Solutions to Chapter 11 Problems 

 
5. Consider a line of charge with linear charge density   arranged, in a primed frame, 

along the y'-axis at rest.  Write the electric field at all points in Cartesian coordinates in 
the primed frame.  Now, consider a line of charge with the same linear charge density, 
parallel to the y-axis, but this time moving in the +x direction at velocity v.  Find the 
electric and magnetic fields everywhere in the unprimed frame. 

 
 For a line of charge along the y'-axis, we can draw a cylinder of radius r' and length L 
around the linear charge density.  The charge enclosed will be L .  Symmetry argues that the 
electric field will point directly out of the cylinder on the lateral surface, and will depend only on 
the distance away, so that   ˆE r E r , where r̂  is a unit vector pointing away from the y'-axis.  

We then use Gauss’s Law to conclude that the electric field everywhere is 
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We therefore have 
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where we recall that in this context r' is the distance of the point from the y'-axis.  Of course, in 
the primed frame, there is no magnetic field at all. 
 To solve the “harder” problem, we now simply perform a Lorentz boost by speed –v in 
the x-direction.  There is one (apparent) subtlety here – are we sure the linear charge density  is 
the same in both frames?  We know that charge is Lorentz-invariant, and a boost in the x-
direction does not affect distances in the y-direction, and since linear charge density is the charge 
per unit length (in the y-direction), the linear charge density should be unchanged. 
 The Lorentz transformations for the fields for this Lorentz boost will be 
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The coordinates are related by 
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Substituting this into the previous expressions, we have  
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