
Physics 712 
Solutions to Chapter 11 Problems 

 
3. A pion (mass m ) at rest decays to a muon (mass m ) and a neutrino (mass 0).  Find the 

energies of the two final particles. 
 
 We first define the momenta in an obvious way, then we write conservation of four-
momentum as 

p p p     

If we solve for, say, the muon momentum, we have p p p    .  Dotting this into itself, we 

have 

2p p p p p p p p               

We replace all the dot products of the momenta with themselves by 2 2p p m c  , and we have 

2 2 2 2 0 2m c m c p p        

The initial pion has momentum  ,0,0,0p m c  , and we write the neutrino momentum as 

 ,p E c   p .  The dot product is then p p m E     , and we have 
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 To get the muon energy, the easiest way is to use conservation of energy: 
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4. A particle of mass m and charge q is in the presence of constant electric and magnetic 

fields ˆEE x  and ˆBB z . 
(a) Write out explicitly all four components of the equation for U  , where dot stands 
for d d .  Find an equation for 1U . 
 
 The electromagnetic field tensor is 
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where we lowered the index by changing the sign of the last three columns. 



 We now need to solve the equations 
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This breaks into four separate equations: 
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The last equation is always trivial to solve. 
 To get a second order differential equation for U1, take another time derivative of the 
second equation and substitute the first and third equation. 
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(b) What is the general solution for  1U  part (b) if E cB ?  Argue that it will exhibit 

periodic behavior (in ), and find the period. 
  
 If E cB , then we define 
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Then our equation is 1 2 1U U  , whose general solution is 

   1 cos sin .U a b    

This will exhibit periodic behavior with a period of  
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(c) Repeat part (b) if E cB .  Will it be periodic in this case? 

 
 If E cB , then define 
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Then our equation is 1 2 1U U , whose general solution is 

   1 cosh sinh .U a b    

This does not exhibit periodic behavior. 


