Physics 712 Chapter 11 Problems

1. We want to consider the effect of two boosts along the *x*-axis. The following hyperbolic identities will prove useful:

$$\begin{aligned} &\cosh\left(\phi_{1}\pm\phi_{2}\right)=\cosh\phi_{1}\cosh\phi_{2}\pm\sinh\phi_{1}\sinh\phi_{2}\,,\\ &\sinh\left(\phi_{1}\pm\phi_{2}\right)=\sinh\phi_{1}\cosh\phi_{2}\pm\cosh\phi_{1}\sinh\phi_{2}\,,\end{aligned} \quad \text{and} \quad \tanh\left(\phi_{1}\pm\phi_{2}\right)=\frac{\tanh\phi_{1}\pm\tanh\phi_{2}}{1\pm\tanh\phi_{1}\tanh\phi_{2}}.$$

- (a) For two successive boosts with rapidity ϕ_1 and ϕ_2 find the equivalent rapidity ϕ_{tot} .
- (b) For two successive boosts with velocity v_1 and v_2 find the equivalent velocity v_{tot} .
- 2. Consider a particle moving along the *x*-axis whose 4-velocity is given at proper time τ by $U^{\mu} = c \left(\cosh \phi, \sinh \phi, 0, 0\right)$, where ϕ is an unknown function of time.
 - (a) Check that $U \cdot U = c^2$. Find the proper acceleration $a(\tau)$ at time τ for an arbitrary function $\phi(\tau)$.
 - (b) Suppose $a(\tau) = g$, a constant. Assuming the particle starts at the origin at $\tau = 0$ and is initially at rest, find $\phi(\tau)$, $U(\tau)$ and $x(\tau)$.
 - (c) How much proper time (in years) would it take to get to Alpha Centauri (4.3 $c \cdot y$), the center of our galaxy (2.6×10⁴ $c \cdot y$), or the edge of the visible universe (4.5×10¹⁰ $c \cdot y$) if you start at rest and accelerate in a straight line at proper acceleration $g = 9.8 \text{ m/s}^2$?
- 3. A pion (mass m_{π}) at rest decays to a muon (mass m_{μ}) and a neutrino (mass 0). Find the energies of the two final particles.
- 4. A particle of mass m and charge q is in the presence of constant electric and magnetic fields $\mathbf{E} = E\hat{\mathbf{x}}$ and $\mathbf{B} = B\hat{\mathbf{z}}$.
 - (a) Write out explicitly all four components of the equation for \dot{U}^{μ} , where dot stands for $d/d\tau$. Find an equation for \ddot{U}^1 .
 - (b) What is the general solution for $U^1(\tau)$ if E < cB? Argue that it will exhibit periodic behavior (in τ), and find the period.
 - (c) Repeat part (b) if E > cB. Will it be periodic in this case?
- 5. Consider a line of charge with linear charge density λ arranged, in a primed frame, along the y'-axis at rest. Write the electric field at all points in Cartesian coordinates in the primed frame. Now, consider a line of charge with the same linear charge density, parallel to the y-axis, but this time moving in the +x direction at velocity v. Find the electric and magnetic fields everywhere in the unprimed frame.