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Effects of quantized free scalar fields in cosmological spacetimes with big rip singularities are

investigated. The energy densities for these fields are computed at late times when the expansion is

very rapid. For the massless minimally coupled field it is shown that an attractor state exists in the sense

that, for a large class of states, the energy density of the field asymptotically approaches the energy density

it would have if it was in the attractor state. Results of numerical computations of the energy density for

the massless minimally coupled field and for massive fields with minimal and conformal couplings to the

scalar curvature are presented. For the massive fields the energy density is seen to always asymptotically

approach that of the corresponding massless field. The question of whether the energy densities of

quantized fields can be large enough for backreaction effects to remove the big rip singularity is addressed.
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I. INTRODUCTION

Surveys of type Ia supernovae and detailed mappings of
the cosmic microwave background provide strong evi-
dence that the Universe is accelerating [1]. To explain
this acceleration within the framework of Einstein’s theory
of general relativity requires the existence of some form of
‘‘dark energy,’’ which has positive energy density and
negative pressure [2].

One common model for dark energy [2] is to treat it as a
pervasive, homogenous perfect fluid with equation of state
p ¼ w�. Cosmic acceleration demands that w<�1=3,
and observations from the Wilkinson Microwave
Anisotropy Probe in conjunction with supernova surveys
and baryon acoustic oscillation measurements place the
current value at w ¼ �0:999þ0:057

�0:056 [3]. Although this is

consistent with the effective equation of state for a cosmo-
logical constant, w ¼ �1, we cannot rule out the possibil-
ity that our Universe contains ‘‘phantom energy,’’ for
which w<�1.

If w is a constant and w<�1, then general relativity
predicts that as the Universe expands the phantom energy
density increases with the result that in a finite amount of
proper time the phantom energy density will become infi-
nite and the Universe will expand by an infinite amount.
All bound objects, from clusters of galaxies to atomic
nuclei, will become unbound as the Universe approaches
this future singularity, aptly called the ‘‘big rip’’ [4].

A simple model of a spacetime with a big rip singularity
can be obtained by considering a spatially flat Robertson-
Walker spacetime, with metric

ds2 ¼ �dt2 þ a2ðtÞðdx2 þ dy2 þ dz2Þ: (1.1)

At late times the phantom energy density is much larger
than the energy density of classical matter and radiation,

and the solution to the classical Einstein equations is

aðtÞ � a1ðtr � tÞ��; (1.2)

with

� ¼ �2=ð3þ 3wÞ> 0: (1.3)

Here a1 is a constant and tr is the time that the big rip
singularity occurs. The phantom energy density is

�ph ¼ 3

8�
�2ðtr � tÞ�2: (1.4)

Note that both the scale factor and the phantom energy
density become infinite at t ¼ tr.
In addition to the singularity in the model described

above, other classes of models containing somewhat
milder phantomlike future singularities have been identi-
fied. Barrow [5] constructed a class of models called
‘‘sudden singularities’’ in which w is allowed to vary as
w / ðtr � tÞ��1 for 0<�< 1. In these models, the pres-
sure and scalar curvature diverge at time tr but the energy
density and scale factor remain finite. Other types of
singular behavior were found in Refs. [6–8]. Nojiri,
Odintsov, and Tsujikawa [9] came up with a general clas-
sification scheme for future singularities. The strongest
singularities are classified as type I and big rip singularities
fall into this class. The sudden singularities are examples
of type II singularities. Two other classes, type III and type
IV, were also identified. For type III singularities, both the
energy density � and the pressure p diverge at the time tr
but the scale factor a remains finite. For type IV singular-
ities, the scale factor remains finite, the energy density �
and the pressure p go to zero at the time tr, but divergences
in higher derivatives of H ¼ _a=a occur. Other classifica-
tion schemes for cosmological singularities have also been
given in Refs. [10–12].
At times close to tr in each of the above cases it is

possible that quantum effects could become large and
that the backreaction of such effects could moderate or
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remove the final singularity. One way to investigate
whether this would occur is to compute the energy density
for the quantum fields in the background geometry of a
spacetime with a final singularity. Then a comparison can
be made between the phantom energy density and the
energy density of the quantized fields. A second way is
to solve the semiclassical backreaction equations to di-
rectly see what effects the quantum fields have.

Nojiri and Odintsov [7,13] studied the backreaction of
conformally invariant scalar fields in the cases of sudden
singularities and big rip singularities and found that quan-
tum effects could delay, weaken, or possibly remove the
singularity at late times. In Ref. [9] Nojiri, Odintsov, and
Tsujikawa used a model for the dark energy with an
adjustable equation of state to find examples of spacetimes
with type I, II, and III singularities. They then solved the
semiclassical backreaction equations and found that the
singularities were usually either moderated or removed by
quantum effects.

Calderón and Hiscock [14] investigated the effects of
conformally invariant scalar, spinor, and vector fields on
big rip singularities by computing the stress energy of the
quantized fields in spacetimes with constant values of w.
Their results depend on the value of w and on the values of
the renormalization parameters for the fields. For values of
w that are realistic for our Universe they found that quan-
tum effects serve to strengthen the singularity. Calderón
[15] made a similar computation in spacetimes with sud-
den singularities and found that whether the singularity is
strengthened or weakened depends on the sign of one of the
renormalization parameters.

Barrow, Batista, Fabris, and Houndjo [16] considered
models with sudden singularities when a massless, mini-
mally coupled scalar field is present. They found that in the
limit t ! tr the energy density of this field remains small in
comparison with the phantom energy density. Thus quan-
tum effects are never important in this case. Batista, Fabris,
and Houndjo [17] investigated the effects of particle pro-
duction when a massless minimally coupled scalar field is
present in spacetimes where w is a constant. To do so they
used a state for which Bunch and Davies [18] had previ-
ously computed the stress-energy tensor. They found that
the energy density of the created particles never dominates
over the phantom energy density.

Pavlov [19] computed both the number density of cre-
ated particles and the stress-energy tensor for a confor-
mally coupled massive scalar field for the case in which
w ¼ �5=3. It was found that backreaction effects are not
important for masses much smaller than the Planck mass
and times which are early enough that the time until the big
rip occurs is greater than the Planck time.

In this paper, we compute the energy densities of both
massless and massive scalar fields with conformal and
minimal couplings to the scalar curvature in spacetimes
with big rip singularities in which the parameter w is a

constant. While our calculations are for scalar fields, it is
worth noting that both massive and massless conformally
coupled scalar fields can be used to model spin 1=2 and
spin 1 fields, and in homogeneous and isotropic spacetimes
the massless minimally coupled scalar field can serve as a
model for gravitons [20,21].
For conformally invariant fields the natural choice of

vacuum state in homogeneous and isotropic spacetimes is
the conformal vacuum [22]. For all other fields there is
usually no natural choice. However, it is possible to define
a class of states called adiabatic vacuum states which,
when the Universe is expanding slowly, can serve as rea-
sonable vacuum states [22]. They can be obtained using a
WKB approximation for the mode functions, and they are
specified by the order of the WKB approximation. It has
been shown that the renormalized stress-energy tensor for a
quantum field is always finite if a fourth-order or higher
adiabatic vacuum state is chosen.1

Here we compute the renormalized energy densities of
the quantum fields in fourth-order or higher adiabatic states
and investigate their behavior as the Universe expands.
One focus is on the differences that occur for the same
field in different states. We find in all cases considered that
the asymptotic behavior of the energy density is always the
same for fields with the same coupling to the scalar curva-
ture, regardless of whether they are massless or massive
and regardless of what states the fields are in. Fields with
minimal coupling to the scalar curvature have a different
asymptotic behavior than those with conformal coupling.
We also address the question of whether and under what

conditions the energy density of the quantized fields be-
comes comparable to the phantom energy density. We find
that for fields in realistic states for which the energy
density of the quantized fields is small compared to that
of the phantom energy density at early times, and for
spacetimes with realistic values of w, there is no evidence
that quantum effects become large enough to significantly
affect the expansion of the spacetime until the spacetime
curvature is of the order of the Planck scale or larger, at
which point the semiclassical approximation breaks down.
In Sec. II the quantization of a scalar field in a spatially

flat Robertson-Walker spacetime is reviewed along with a
method of constructing adiabatic states. In Sec. III the
energy density for massless scalar fields with conformal
and minimal coupling to the scalar curvature is discussed
and a comparison is made with the phantom energy den-
sity. For the massless minimally coupled scalar field a
proof is given that one particular state serves as an attractor
state in the sense that for a large class of states, the energy
density of the field asymptotically approaches the energy
density it would have if it was in the attractor state. In

1In this paper we generalize the definition of an nth-order
adiabatic vacuum state to include all states whose high momen-
tum modes are specified by an nth-order WKB approximation
but whose other modes can be specified in any way.
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Sec. IV numerical calculations of the energy density for
massive scalar fields with conformal and minimal coupling
to the scalar curvature are discussed. A comparison is made
with both the phantom energy density and the energy
density of the corresponding massless scalar field. Our
main results are summarized and discussed in Sec. V.
Throughout, units are used such that @ ¼ c ¼ G ¼ 1 and
our sign conventions are those of Misner, Thorne, and
Wheeler [23].

II. QUANTIZATION IN SPATIALLY FLAT
ROBERTSON-WALKER SPACETIMES

We consider a scalar field � obeying the wave equation

ðh�m2 � �RÞ� ¼ 0; (2.1)

where m is the mass of the field and � is its coupling to the
scalar curvature R. It is convenient for our calculations to
use the conformal time variable

� ¼
Z t

tr

d�t

að�tÞ : (2.2)

We expand the field in terms of modes in the usual way
[22]

�ðx; �Þ ¼ 1

að�Þ
Z d3k

ð2�Þ3=2 ½ake
ik�xc kð�Þ

þ ayke
�ik�xc �

kð�Þ�; (2.3)

with the creation and annihilation operators satisfying the
commutation relations

½ak; ak0 � ¼ ½ayk; ayk0 � ¼ 0; ½ak; ayk0 � ¼ �ðk� k0Þ:
(2.4)

The time-dependent part of the mode function satisfies the
equation

c 00
k þ

�
k2 þm2a2 þ 6

�
�� 1

6

�
a00

a

�
c k ¼ 0; (2.5)

with a constraint given by the Wronskian condition

c kc
�0
k � c �

kc k
0 ¼ i: (2.6)

Throughout primes denote derivatives with respect to the
conformal time �.

We restrict our attention to states for which the stress-
energy tensor is homogeneous and isotropic. Thus the
stress-energy tensor is uniquely specified by the energy
density h�ir ¼ �hT0

0i and the trace hTi. The unrenormal-

ized energy density is [24]

h�iu ¼ 1

4�2a4

Z 1

0
dkk2

�
�
jc 0

kj2 þ
�
k2 þm2a2 � 6

�
�� 1

6

�
a02

a2

�
jc kj2

þ 6

�
�� 1

6

�
a0

a
ðc kc

�0
k þ c �

kc k
0Þ
�
: (2.7)

Renormalization is to be accomplished through the use of
adiabatic regularization [25–28]. Following the prescrip-
tion given in Ref. [29] the renormalized energy density is

h�ir ¼ h�iu � h�id þ h�ian; (2.8a)

with2

h�id ¼ 1

4�2a4

Z 1

0
dkk2

�
kþ 1

k

�
m2a2

2
�

�
�� 1

6

�
3a02

a2

��

þ 1

4�2a4

Z 1

	
dkk2

�
1

k3

�
�m4a4

8
�

�
�� 1

6

�
3m2a02

2

þ
�
�� 1

6

�
2ð1ÞH0

0 a
4

4

��
; (2.8b)

h�ian ¼ 1

2880�2

�
�1

6
ð1ÞH0

0 þ ð3ÞH0
0

�
þ m2

288�2
G0

0

� m4

64�2

�
1

2
þ log

�

2a2

4	2

��
þ

�
�� 1

6

�� ð1ÞH0
0

288�2

þ m2

16�2
G0

0

�
3þ log

�

2a2

4	2

���
þ

�
�� 1

6

�
2

�
�ð1ÞH0

0

32�2

�
2þ log

�

2a2

4	2

��
� 9

4�2

a02a00

a7

�
; (2.8c)

and

ð1ÞH0
0 ¼ � 36a000a0

a6
þ 72a00a02

a7
þ 18a002

a6
; (2.8d)

ð3ÞH0
0 ¼ 3a04

a8
; (2.8e)

G0
0 ¼ � 3a02

a4
: (2.8f)

Note that the value of h�ir is independent of the arbitrary
cutoff 	. For a massive field
 ¼ mwhereas for a massless
field 
 is an arbitrary constant. The renormalization pro-
cedure for the trace hTi is given in Ref. [29] and follows
similar lines. For the purposes of this paper, we are con-
cerned only with the energy density.

2Note that Eq. (9a) of Ref. [29] has a misprint. The term on the
third line which is proportional to m2 should be multiplied by a
factor of ð�� 1=6Þ.
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WKB approximation and adiabatic states

A formal solution to the time-dependent part of the
mode equation can be given using a WKB expansion.
First make the change of variables

c kð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Wð�Þp exp

�
�i

Z �

�0

Wð ��Þd ��

�
; (2.9)

where �0 is some arbitrary constant. Substituting into
Eq. (2.5) gives

W ¼
�
k2 þm2a2 þ 6

�
�� 1

6

�
a00

a
� 1

2

�
W 00

W
� 3W 02

2W2

��
1=2

:

(2.10)

Approximate solutions to the above equation may be
obtained using an iterative scheme, where each successive
iteration is given by

WðnÞ
k ¼

�
k2 þm2a2 þ 6

�
�� 1

6

�
a00

a

� 1

2

�
Wðn�2Þ00

k

Wðn�2Þ
k

� 3

2

�
Wðn�2Þ0

k

Wðn�2Þ
k

�
2
��

1=2
; (2.11)

with

Wð0Þ
k � ðk2 þm2a2Þ1=2: (2.12)

Taken in conjunction with Eq. (2.9), this can be used to
define an nth-order WKB approximation to the mode
equation,

c ðnÞ
k ð�Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðnÞ
k ð�Þ

q exp

�
�i

Z �

�0

WðnÞ
k ð ��Þd ��

�
: (2.13)

In general, this approximation is valid when k is large and/
or the scale factor varies slowly with respect to �. In these
cases it will differ from the true solution by terms of higher
order than n.

Exact solutions of the mode equation can be specified by
fixing the values of c k and c 0

k at some initial time �0 in

such a way that the Wronskian condition (2.6) is satisfied.
One way to do this is to use an nth-order WKB approxi-
mation to generate these values. For example, if (2.13) is
used, then

c kð�0Þ ¼ c ðnÞ
k ð�0Þ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2WðnÞ
k ð�0Þ

q ;

c 0
kð�0Þ ¼ c 0ðnÞ

k ð�0Þ ¼ �i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WðnÞ

k ð�0Þ
2

s
:

(2.14)

Note that, while it is acceptable to include derivatives of

WðnÞ
k in the expression for c 0

k, it is not necessary because

such terms are of order nþ 1.
If Eq. (2.14) is substituted into Eq. (2.7) and then the

quantity hT0
0ir is computed, it is found that there are state-

dependent ultraviolet divergences in general for zeroth-

order and second-order adiabatic states. There are no
such state-dependent ultraviolet divergences for fourth-
or higher-order adiabatic states. This is true for all times
because in a Robertson-Walker spacetime an nth-order
adiabatic state always remains an nth-order adiabatic state
[22].
In what follows we are interested in investigating a large

class of states. Thus as mentioned in footnote 1 in the
Introduction we generalize the definition of an nth-order
adiabatic vacuum state to include all states whose high
momentum modes are specified in the above way by an
nth-order WKB approximation but whose other modes can
be specified in any way. However, we shall not consider
states in this paper which result in an infrared divergence of
the energy density.

III. MASSLESS SCALAR FIELDS

A. The massless conformally coupled scalar field

Setting � ¼ 1=6 and m ¼ 0 in Eq. (2.5) gives the mode
equation for the conformally coupled scalar field

c 00
k þ k2c k ¼ 0; (3.1)

which has solutions

c k ¼ �
e�ik�ffiffiffiffiffi
2k

p þ �
eik�ffiffiffiffiffi
2k

p : (3.2)

The conformal vacuum is specified by the state with � ¼ 1
and� ¼ 0. Following the renormalization procedure given
in Eq. (2.8a), we note that the contribution from the modes
h�iu is exactly canceled by the counterterms in h�id. Thus,
the renormalized energy density is given by

h�ir ¼ h�ian ¼ 1

2880�2

�
� 1

6
ð1ÞH0

0 þ ð3ÞH0
0

�
: (3.3)

To determine the point at which quantum effects become
important one can compare the energy density of the
quantum field with the phantom energy density. This can
be done analytically by using Eqs. (3.9) and (3.10) to write
Eq. (3.3) in terms of the scalar curvature as

h�ir ¼ 1

34 560�2

27w2 þ 18w� 5

ð1� 3wÞ2 R2: (3.4)

The phantom energy density in terms of the scalar curva-
ture is given by

�ph ¼ 1

8�ð1� 3wÞR: (3.5)

Since R diverges at the time tr it is clear that eventually the
energy density of the conformally invariant field becomes
comparable to and then larger than the phantom energy
density. The two densities are equal at the time when

R ¼ 4320�
1� 3w

27w2 þ 18w� 5
: (3.6)
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For the semiclassical approximation to be valid we need
the spacetime curvature to be much less than the Planck
scale or R � 1. From Eq. (3.6) one finds the two densities
are equal when R ¼ 1 if

w ¼ � 1

9
ð3þ 2160�þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6þ 6480�þ 1 166 400�2

p
Þ

� �1500: (3.7)

Thus for any physically realistic value of w the energy
density of the scalar field will remain small compared to
the phantom energy density until the scalar curvature is
above the Planck scale. For example, for w ¼ �1:25, the
energy density of the scalar field equals the phantom
energy density at R � 4400.

B. The massless minimally coupled scalar field

Setting m ¼ � ¼ 0 in (2.5) gives the mode equation for
the massless minimally coupled scalar field,

c 00
k þ

�
k2 � a00

a

�
c k ¼ 0: (3.8)

In terms of the conformal time � the scale factor is

að�Þ ¼ a0ð��Þ��; (3.9)

with

� ¼ � 2

1þ 3w
> 0 (3.10)

and a0 a positive constant.
The general solution to this equation is given in terms of

Hankel functions,

c kð�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi���

p
2

½�Hð1Þ
�þð1=2Þð�k�Þ þ �Hð2Þ

�þð1=2Þð�k�Þ�:
(3.11)

Substitution into the Wronskian condition (2.6) gives the
constraint

j�j2 � j�j2 ¼ 1: (3.12)

A special case is the solution with � ¼ 1 and � ¼ 0.
The stress-energy tensor was computed analytically for the
state specified by this solution by Bunch and Davies [18].
Therefore, in what follows, we will refer to this state as the
Bunch-Davies state. Bunch and Davies found that3

h�iBDr ¼ 1

2880�2

�
� 1

6
ð1ÞH0

0 þ ð3ÞH0
0

�
� 1

1152�2
ð1ÞH0

0

�
log

�
R


2

�
þ c ð2þ �Þ þ c ð1� �Þ þ 4

3

�

þ 1

13 824�2

�
�24hRþ 24RR0

0 þ 3R2

�
� R

96�2a2�2

¼ � 1

69 120�2

ð351w2 þ 54w� 65Þ
ð3w� 1Þ2 R2 þ 1

256�2

ðwþ 1Þ
ð3w� 1ÞR

2

�
log

�
R


2

�
þ c

�
3þ 3w

1þ 3w

�
þ c

�
6w

1þ 3w

�
þ 4

3

�
:

(3.13)

The mass scale 
 in the above expression is an arbitrary
constant and c is the digamma function.

As in the case for the massless conformally coupled
scalar field, one can compare Eq. (3.13) with Eq. (3.5)
and see that eventually the energy density of the scalar
field will become comparable to and then greater than the
phantom energy density. A graphical analysis shows that
for w * �140 the two energy densities become compa-
rable at a time when R * 1. For example, if w ¼ �1:25
and
 ¼ 1, the energy density of the scalar field equals the
phantom energy density at R � 180.

The Bunch-Davies state turns out to be an attractor state
in the sense that the energy density for all homogeneous
and isotropic fourth-order or higher adiabatic states ap-
proaches h�iBDr . This type of behavior was found in
Ref. [30] in de Sitter space for scalar fields in the Bunch-
Davies state, and we use the same type of argument here as
was used in that paper to establish it. First note that, since
the renormalization counterterms are the same for any
choice of � and � in Eq. (3.11), the renormalized energy
density can be written in terms of the energy density of the

Bunch-Davies state plus remainder terms. By substituting
Eq. (3.11) into Eq. (2.7), setting m ¼ � ¼ 0, and using the
constraint given in Eq. (3.12), one finds that for this class of
states the energy density can be written as

h�ir ¼ h�iBDr þ Ið�Þ; (3.14)

with

Ið�Þ ¼ ð��Þ
8�a4

Z 1

0
dkk4fj�j2½jHð1Þ

��ð1=2Þð�k�Þj2

þ jHð1Þ
�þð1=2Þð�k�Þj2�

þ Reð���½ðHð1Þ
��ð1=2Þð�k�ÞÞ2

þ ðHð1Þ
�þð1=2Þð�k�ÞÞ2�Þg: (3.15)

3In the process of our calculation, we discovered a misprint in
Eq. (3.36) of Ref. [18], which is repeated in Eq. (7.52) of
Ref. [22]. The final term in both equations should be multiplied
by a factor of 2.
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The integral in the above expression can be split into
three parts:

Ið�Þ ¼ I1ð�Þ þ I2ð�Þ þ I3ð�Þ;
I1ð�Þ ¼ ð��Þ

8�a4

Z 	

0
dkk4f. . .g; (3.16a)

I2ð�Þ ¼ ð��Þ
8�a4

Z �Z=�

	
dkk4f. . .g; (3.16b)

I3ð�Þ ¼ ð��Þ
8�a4

Z 1

�Z=�
dkk4f. . .g; (3.16c)

where 	 and Z are positive constants. To have a fourth-
order adiabatic state, j�j must fall off faster than c1=k

4 for
large enough values of k and any positive constant c1; thus
	 is chosen such that j�j< 1=k4 when k 	 	. The constant
Z is chosen such that 0<Z � 1.

To evaluate the first integral, we use the series expansion

Hð1Þ
 ðxÞ ¼ �i

�ðÞ
�

�
x

2

�� þOðx�þ2Þ þOðxÞ: (3.17)

This is valid when x ¼ �k� 
 Z. We note that at late
enough times Z >�	� for any choice of Z and 	. Using
the expansion (3.17) in Eq. (3.15), one finds to leading
order that

I1ð�Þ ¼
22�½�ð�þ 1

2Þ�2
4�3a40

ð��Þ2�
Z 	

0
dkfk3�2�½j�j2

� Reð���Þ� þO½ð�k�Þ2� þO½ð�k�Þ2�þ1�g:
(3.18)

For states with no infrared divergences the integral is finite,
so we find that I1ð�Þ ! 0 as ð��Þ ! 0.

For the second integral, due to the time dependence in
the upper limit cutoff, we find that all orders of the expan-
sion given in Eq. (3.17) contribute, so a different treatment
is necessary. Using the fact that for k 	 	 we have j�j2 <
1=k8 and j���j< c2=k

4 for some positive constant c2, we
can put the following upper bound on the integral in
Eq. (3.16b):

jI2ð�Þj< ð��Þ
8�a4

Z �Z=�

	
dk

��
1

k4
þ c2

�
½ðJ�þð1=2Þð�k�ÞÞ2

þ ðJ��ð1=2Þð�k�ÞÞ2 þ ðY�þð1=2Þð�k�ÞÞ2
þ ðY��ð1=2Þð�k�ÞÞ2�
þ 2c2½jJ�þð1=2Þð�k�ÞY�þð1=2Þð�k�Þj
þ jJ��ð1=2Þð�k�ÞY��ð1=2Þð�k�Þj�

�
: (3.19)

Assuming � � 1
2 , one can use the standard series expan-

sions for Bessel functions to show that the terms in the
integrand are all of the form

ð��Þ4�þ1
Z �Z=�

	
dk

�
~c1
k4

þ ~c2

� X1
n;n0¼0

ð�1Þnþn0

n!n0!

� ð�k�Þð�1þ�2Þpþ2nþ2n0

�ð�1pþ nþ 1Þ�ð�2pþ n0 þ 1Þ ; (3.20)

where �1 and �2 independently take on the values �1, p
takes on the values �� 1

2 , and ~c1 and ~c2 are constants.

After integration, Eq. (3.20) becomes

ð��Þ4� X1
n;n0¼0

ð�1Þnþn0

n!n0!
1

�ð�1pþ nþ 1Þ�ð�2pþ n0 þ 1Þ
�� ð��Þ4~c1

Z4ðð�1 þ �2Þpþ 2nþ 2n0 � 3Þ

þ ~c2
ð�1 þ �2Þpþ 2nþ 2n0 þ 1

�
Zð�1þ�2Þpþ2nþ2n0þ1 �

�
~c1

	4ðð�1 þ �2Þpþ 2nþ 2n0 � 3Þ
þ ~c2

ð�1 þ �2Þpþ 2nþ 2n0 þ 1

�
ð�	�Þð�1þ�2Þpþ2nþ2n0þ1

�
: (3.21)

Note that the above series converges. The smallest power
of ð��Þ is ð��Þ2� and occurs when �1 ¼ �2 ¼ �1 and
p ¼ �þ 1

2 . It comes from the n ¼ n0 ¼ 0 term. Thus,
I2ð�Þ ! 0 as ð��Þ ! 0.

In the case � ¼ 1
2 , we must use the appropriate series

expansions for Y0ð�k�Þ and Y1ð�k�Þ, so Eq. (3.21) will
contain different terms. However the argument is similar
and the result that I2ð�Þ ! 0 as ð��Þ ! 0 is the same.

For the third integral, using j�j2 < 1=k8 and j���j<
c2=k

4 and changing variables to x ¼ �k� gives the bound

jI3ð�Þj 
 ð��Þ4�þ4

8�a40

Z 1

Z
dx

1

x4
½jHð1Þ

��ð1=2ÞðxÞj2

þ jHð1Þ
�þð1=2ÞðxÞj2� þ

c2ð��Þ4�
8�a40

�
Z 1

Z
dxjðHð1Þ

��ð1=2ÞðxÞÞ2 þ ðHð1Þ
�þð1=2ÞðxÞÞ2j:

(3.22)

By noting that jHð1Þ
 ðxÞj � 1=

ffiffiffi
x

p
at large x, it is clear that
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these integrals are finite. Further, each integral is indepen-
dent of ð��Þ, so the contribution from this piece goes like
some constant times ð��Þ4�. Thus, Ið�Þ ! 0 as ð��Þ ! 0
and this completes our proof that h�iBDr is an attractor state.

To demonstrate this behavior numerically, we compare
the energy density from Eq. (3.13) which occurs for � ¼ 1
and� ¼ 0 to the renormalized energy density of a different
fourth-order adiabatic state. One way to specify a fourth-
order adiabatic state is to use a fourth-order WKB approxi-
mation as discussed in Sec. II. However, for the spacetimes
we are considering, using a fourth-order WKB approxima-
tion in Eqs. (2.13) and (2.14) in the limit k ! 0 results in an
infrared divergence of h�i. To avoid such a divergence, we
use a zeroth-order WKB approximation for the modes with
0 
 k 
 k0, for some positive constant k0. According to
the generalized definition we give in Sec. I, these are still
fourth-order adiabatic states. A given state is specified by
the value of k0 and the time �0 at which the matching in
Eq. (2.14) is done.

As shown in Fig. 1, the energy density of the state
specified by choosing k0 ¼ 0:2 and �0 ¼ �100 ap-
proaches that of the Bunch-Davies state as expected. A
number of other numerical calculations were done for
various values of k0 and�0 with the same qualitative result.
Note that, for all the numerical calculations that were done
for this paper, w ¼ �1:25 and a0 � 22:6.

It is of course possible to construct states for which, at
times close to �0, the energy density is large compared to
the phantom energy density. However, there is no reason to
expect that the energy density of quantized fields at early
times should be comparable to that of the phantom energy
density since that is not the case today. Thus our numerical

results provide evidence that if the initial energy density is
small compared to the phantom energy density at times
close to �0, then, for realistic values of w, it will remain
small during the period when the semiclassical approxi-
mation should be valid.

IV. MASSIVE SCALAR FIELDS

A. Massive conformally coupled scalar fields

Setting � ¼ 1=6 in Eq. (2.5) gives the mode equation for
a massive conformally coupled scalar field,

c 00
k þ ðk2 þm2a2Þc k ¼ 0: (4.1)

In this case, we do not have an analytic solution for the
mode equation and there is no obvious choice for the
vacuum state. Instead, we choose our initial state by using
the method outlined near the end of Sec. III B and compute
solutions to the mode equation and the energy density
numerically. What we find is that there is an initial con-
tribution to the energy density from the modes of the field
in addition to the contribution from Eq. (3.3); however, as
the Universe expands this contribution redshifts away and
the energy density approaches the energy density of the
massless conformally coupled scalar field. An example is
shown in Fig. 2 for a field with mass m ¼ 0:005 in a state
specified by k0 ¼ 0:1 and �0 ¼ �100. We have tested this
for several different initial states and different masses and
found consistent behavior in all cases.
As with the massless minimally coupled scalar field, it is

possible to construct states with a large initial contribution
to the energy density, and these states can be ruled out by
the same argument as given in Sec. III B. Our numerical
results provide evidence that if the energy density of the

FIG. 1. The dashed line represents the phantom energy density
�ph in the case that w ¼ �1:25. The two solid lines represent the

energy density h�ir for two states of the massless minimally
coupled scalar field. The central line is the Bunch-Davies attrac-
tor state. The oscillating line is the fourth-order adiabatic state
with k0 ¼ 0:2 and �0 ¼ �100. For both states, the mass scale

 ¼ 1 has been used.

FIG. 2. The dashed line represents the phantom energy density
�ph in the case that w ¼ �1:25. The upper solid line is h�ir for a
massive (m ¼ 0:005) conformally coupled scalar field in the
fourth-order adiabatic state with k0 ¼ 0:1 and �0 ¼ �100; the
lower one is h�ir for the massless conformally coupled scalar
field.
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quantized field is small compared to the phantom energy
density at times close to �0, then, for realistic values of w,
it will remain small during the period when the semiclas-
sical approximation should be valid.

B. Massive minimally coupled scalar fields

The last case we consider is that of massive, minimally
coupled scalar fields, which obey the mode equation

c 00
k þ

�
k2 þm2a2 � a00

a

�
c k ¼ 0: (4.2)

Again, we choose our initial state by using the method
outlined near the end of Sec. III B and evolve the modes
forward in time numerically.

Qualitatively, the behavior here is similar to the behavior
found for the massless, minimally coupled field in a fourth-
order adiabatic vacuum state. At late times, the contribu-
tion from the mass terms is small compared to other terms
and the energy density approaches that of the massless
minimally coupled scalar field in the Bunch-Davies vac-
uum state. We note that there is an arbitrary mass scale 

present in the renormalized energy density (3.13) for the
massless scalar field; the convergence shown in Fig. 3
occurs when 
 is set equal to the mass of the massive
field. At very late times the value of 
 does not affect the

leading order behavior of h�i for the massless minimally
coupled scalar field and thus, for any value of
, the energy
density of the massive field asymptotically approaches that
of the massless field in all cases considered.

V. SUMMARYAND CONCLUSIONS

We have computed the energy densities of both massless
and massive quantized scalar fields with conformal and
minimal coupling to the scalar curvature in spacetimes
with big rip singularities. We have restricted attention to
states which result in a stress-energy tensor which is ho-
mogeneous and isotropic and free of ultraviolet and infra-
red divergences. For the numerical computations we have
further restricted attention to states for which, near the
initial time of the calculation, the energy density of the
quantum field is much less than that of the phantom field.
For the massless minimally coupled scalar field we have

shown that the energy density for the field in any fourth-
order or higher adiabatic state for which the stress-energy
tensor is homogeneous, isotropic, and free of infrared
divergences always asymptotically approaches the energy
density which this field has in the Bunch-Davies state. In
this sense the Bunch-Davies state is an attractor state.
For massive minimally coupled scalar fields numerical

computations have been made of the energy density for
different fourth-order adiabatic states, and in every case
considered the energy density approaches that of the
Bunch-Davies state for the massless minimally coupled
scalar field at late times. For conformally coupled massive
scalar fields numerical computations have also been made
of the energy density for different fourth-order adiabatic
states. In each case considered the energy density asymp-
totically approaches that of the massless conformally
coupled scalar field in the conformal vacuum state. Thus
it appears that the asymptotic behavior of the energy
density of a quantized scalar field in a spacetime with a
big rip singularity depends only upon the coupling of the
field to the scalar curvature and not upon the mass of the
field or which state it is in, at least within the class of states
we are considering.
Analytic expressions for the energy densities of both the

massless conformally coupled scalar field in the conformal
vacuum state and the massless minimally coupled scalar
field in the Bunch-Davies state in spacetimes with big rip
singularities have been previously obtained [18,22] and are
shown in Eqs. (3.3) and (3.13). To investigate the question
of whether backreaction effects are important in these
cases, the energy density of the scalar field can be com-
pared to the phantom energy density to see if there is any
time at which they are equal or at least comparable. Then
one can determine whether the semiclassical approxima-
tion is likely to be valid at this time by evaluating the scalar
curvature and seeing whether or not it is well below the
Planck scale. We have done this and find that for the
conformally coupled field the two energy densities are

FIG. 3. The dashed line represents the phantom energy density
�ph in the case that w ¼ �1:25. The central solid line is the

energy density h�ir for a massless minimally coupled scalar field
in the Bunch-Davies state with mass scale 
 ¼ 0:001. The
oscillating line is the energy density for a massive (m ¼
0:001) minimally coupled scalar field in the fourth-order adia-
batic state with k0 ¼ 1 and �0 ¼ �50. Note that the quantity j�j
rather than � has been plotted since the energy density of the
massive field is negative at � ¼ �0, oscillates between positive
and negative values for a period of time, and then becomes
positive definite at late times. Note that, except at the initial time,
the times where the curve is nearly vertical when it reaches a
lower limit are times at which the energy density goes through
zero, which is �1 on the scale of this plot. Thus the curve
should really extend down to �1 at these points.

JASON D. BATES AND PAUL R. ANDERSON PHYSICAL REVIEW D 82, 024018 (2010)

024018-8



equal at the point when the scalar curvature is at the Planck
scale ifw��1500. For the minimally coupled scalar field
this combination occurs if w��140. Thus for w �
�1500 for the conformally coupled field and w � �140
for the minimally coupled field, one expects that back-
reaction effects may be important at times when the scalar
curvature is well below the Planck scale. However, the
values of w which satisfy these constraints are completely
ruled out by cosmological observations.

Another way in which the energy density of a quantum
field can be comparable to the phantom energy density at
scales well below the Planck scale is to construct a state for
which this is true. There is no doubt that such states exist.
The analytic and numerical evidence we have is that over
long periods of time the energy density of a conformally or
minimally coupled scalar field in such a state would de-
crease and at late enough times become comparable to that
of a massless field in the conformal or Bunch-Davies
vacuum state, respectively. More importantly, one can
ask whether any such states exist which are realistic for
the Universe that we live in. This seems unlikely because
today is certainly an early time compared to tr if our
Universe does have a big rip singularity in its future;

however, the energy densities of quantized fields today
are much less than that of the dark energy. Thus it would
be necessary for the energy density of a quantum field to be
small compared to the phantom energy density today and
then to grow fast enough to become comparable to it well
before the Planck scale is reached. This type of behavior
seems highly artificial, particularly since it is not what
happens for a massless scalar field in the conformal or
Bunch-Davies vacuum states. Thus we find no evidence
which would lead us to believe that backreaction effects
due to quantum fields would remove a big rip singularity in
our Universe, if indeed such a singularity lies in our future.
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